
Assignment 2, University of Toronto, CSC384 - Intro to AI, Summer 2020 1

Computer Science 384 June 8, 2020
St. George Campus University of Toronto

Homework Assignment #2: Constraint Satisfaction
Due: June 23, 2020 by 10:00 PM

Silent Policy: A silent policy will take effect 24 hours before this assignment is due, i.e. no question about
this assignment will be answered, whether it is asked on the discussion board, via email or in person.

Late Policy: 10% per day after the use of 3 grace days.

Total Marks: This part of the assignment represents 13% of the course grade.

Handing in this Assignment
What to hand in on paper: Nothing.

What to hand in electronically: You must submit your assignment electronically. Download code.zip

which contains propagators.py and asterisk csp.py and other related files from the A2 web page.
Modify propagators.py and asterisk csp.py so that they solve the problems specified in this docu-
ment. Submit your modified files propagators.py and asterisk csp.py as well as search.pdf (to
answer question 3) and acknowledgment form.pdf You will submit your assignment using MarkUs.
Your login to MarkUs is your teach.cs username and password. It is your responsibility to include all nec-
essary files in your submission. You can make as many submissions as you like while you still have grace
days; the number of grace days you use will be determined by the time of your final submission.

We will test your code electronically. You will be supplied with a testing script that will run a subset of
the tests. If your code fails all of the tests performed by the script (using Python version 3.7), you will
receive zero marks. It’s up to you to figure out further test cases to further test your code – that’s part of
the assignment!

When your code is submitted, we will run a more extensive set of tests which will include the tests run in
the provided testing script and a number of other tests. You have to pass all of these more elaborate tests to
obtain full marks on the assignment.

Your code will not be evaluated for partial correctness, it either works or it doesn’t. It is your responsibility
to hand in something that passes at least some of the tests in the provided testing script.

• Make certain that your code runs on teach.cs using python3 (version 3.7) using only standard im-
ports. This version is installed as “python3” on teach.cs. Your code will be tested using this version
and you will receive zero marks if it does not run using this version.
• Do not add any non-standard imports from within the python file you submit (the imports that are

already in the template files must remain). Once again, non-standard imports will cause your code to
fail the testing and you will receive zero marks.
• Do not change the supplied starter code. Your code will be tested using the original starter code, and

if it relies on changes you made to the starter code, you will receive zero marks.

Clarification Page: Important corrections (hopefully few or none) and clarifications to the assignment
will be posted on the Assignment 2 Clarification page, linked from the CSC384 A2 web page, also



Assignment 2, University of Toronto, CSC384 - Intro to AI, Summer 2020 2

found at: http://www.teach.cs.toronto.edu/~csc384h/summer/Assignments/A2/a2_faq.html.
You are responsible for monitoring the A2 Clarification page.

Questions: Questions about the assignment should be asked on Piazza:

https://piazza.com/utoronto.ca/summer2020/csc384/home.

You may also reach out to the Assignment 2 TAs, Chris Karavasilis (ckar at cs.toronto.edu) or one of the
instructors. Please place ”A2” and ”CSC384” in the subject line of your email.

Introduction

There are three parts to this assignment

1. the implementation of two constraint propagators and a variable ordering heuristic – a Forward
Checking constraint propagator, a Generalized Arc Consistence (GAC) constraint propagator, and
the Minimum Remaining Values (MRV) heuristic,

2. the encoding of two different CSP models to solve the logic puzzle, Asterisk, as described below.
In one model you will use only binary not-equal constraints, while in the other model you will use
9-ary all-different constraints.

3. A question about solving Asterisk using search, requiring a written answer.

What is supplied:

• cspbase.py – class definitions for the python objects Constraint, Variable, and BT.

• propagators.py – starter code for the implementation of your two propagators and variable ordering
heuristic. You will modify this file with the addition of three new procedures prop FC, prop GAC,
and ord mrv, to realize Forward Checking, GAC and MRV, respectively.

• csp sample run.py – This file contains a sample implementation of two CSP problems.

• asterisk csp.py – starter code for the two Asterisk CSP models.

• propagators test.py for testing your code for FC and GAC.

Asterisk Formal Description
The Asterisk puzzle1 has the following formal description:

• The puzzle is played on an 9x9 board.

• Each cell of the board may take a value between 1 and 9 inclusive. You will use a list of lists in order
to represent assigned values to the variables on this grid.

• The start state of the puzzle will have some cells already filled in.

• Additionally, there are 10 houses, groups of 9 cells that must contain numbers 1 through 9. Each of
the nine 3x3 subgrids is a house. The group of cells (1-indexed) ((2,5), (3,3), (3,7), (5,2), (5,5), (5,8),
(7,3), (7,7), (8,5)) is also a house.

1http://sudopedia.enjoysudoku.com/Asterisk.html



Assignment 2, University of Toronto, CSC384 - Intro to AI, Summer 2020 3

Figure 1: An example of an Asterisk grid in its initial state (left) and solution (right).

• A puzzle is solved if:
– Every space on the board is given one value between 1 and n inclusive.

– No row contains more than one of the same number.

– No column contains more than one of the same number.

– All houses contain numbers 1 through 9.

An example of an Asterisk instance and its solution are depicted in figure 1.

Question 1: Propagators (worth 50/100 marks)

You will implement python functions to realize two constraint propagators – a Forward Checking con-
straint propagator and a Generalized Arc Consistence (GAC) constraint propagator. These propagators are
briefly described below. The files cspbase.py and propagators.py provide the complete input/output
specification of the functions you are to implement. In all cases, the CSP object is used to access variables
and constraints of the problem, via methods found in cspbase.py.

Brief implementation description: A Propagator Function takes as input a CSP object csp and (op-
tionally) a variable newVar. The CSP object is used to access the variables and constraints of the problem
(via methods found in cspbase.py). A propagator function returns a tuple of (bool,list) where bool

is False if and only if a dead-end is found, and list is a list of (Variable, value) tuples that have been
pruned by the propagator. ord mrv takes a CSP object csp as input, and returns a Variable object var. You
must implement: You must implement:.

prop FC (worth 20/100 marks)
A propagator function that propagates according to the Forward Checking (FC) algorithm that check
constraints that have exactly one uninstantiated variable in their scope, and prune appropriately.

If newVar is None, forward check all constraints. Else, if newVar=var only check constraints con-
taining newVar.



Assignment 2, University of Toronto, CSC384 - Intro to AI, Summer 2020 4

prop GAC (worth 20/100 marks)
A propagator function that propagates according to the Generalized Arc Consistency (GAC) algo-
rithm, as covered in lecture. If newVar is None, run GAC on all constraints. Else, if newVar=var
only check constraints containing newVar.

ord mrv (worth 10/100 marks)
A variable ordering heuristic that chooses the next variable to be assigned according to the Minimum
Remaining Values (MRV) heuristic. ord mrv returns the variable with the most constrained current
domain (i.e., the variable with the fewest legal values).

Question 2: Asterisk Models (worth 40/100 marks)

You will implement two different CSP encodings to solve the logic puzzle, Asterisk. In one model you will
use only binary not-equal constraints, while in the other model you will use 9-ary all-different constraints
in addition. These CSP models are briefly described below. The file asterisk csp.py provides the
complete input/output specification for the two CSP encodings you are to implement.

The correct implementation of each encoding is worth 20/100 marks.

Brief implementation description: An Asterisk Model takes as input an Asterisk board, and returns a
CSP object, consisting of a variable corresponding to each cell of the board. The variable domain of a
cell is {1, ...,9} if the board is unfilled at that position, and equal to i if the board has a fixed number i at
that cell. All appropriate constraints will be added to the board as well. You must implement:

asterisk csp model 1 A model built using only binary not equal constraints.

asterisk csp model 2 A model built using 9-ary all-different constraints.

Caveat: The Asterisk CSP models you will construct can be space expensive, especially for constraints
over many variables, (e.g., those contained in the second Asterisk CSP model). HINT: Also be mindful of
the time complexity of your methods for identifying satisfying tuples, especially when coding the second
Asterisk CSP model.

Question 3: Search (worth 10/100 marks)

Answer the following questions in a file called search.pdf.

1. Assume you are given an Asterisk instance with a randomly assigned value from 1 to 9 in every empty
cell. How might you define a search problem that would start at this initial state and gets to a goal state?
Briefly detail a possible state space, start state, goal test, and successor function. (5 marks)

2. When might such a search algorithm be preferable to plain backtracking with MRV? When might
plain back tracking be preferable? (5 marks)

HAVE FUN and GOOD LUCK!


