CSC384
Introduction to Artificial Intelligence

Fall 2019
Instructor Fahiem Bacchus
CSC384: Intro to Artificial Intelligence

Instructor: Fahiem Bacchus

- Office D.L. Pratt, Room 398E
- Office Hours: Wed. 16:00—17:00 pm and Thurs 16:00–17:00
- Email: fbacchus@cs.toronto.edu (See email policy)

Lectures/Tutorials:

- Lectures
 - Monday, Wednesday, Friday
 - 1:00—2:00 pm (Lecture 101 and 2001) **Room BA 1170**
 - 2:00—3:00 pm (Lecture 201) **Room BA 1180**

- Tutorial
 - Typically Fridays, but some Fridays will be used for Lectures
Note:
You are responsible for all material covered in either tutorials or lectures (unless otherwise specified)
CSC384: Intro to Artificial Intelligence

Important Dates:

October 14th (Monday) Public Holiday Thanksgiving

November 4th to 8th Fall Reading Week

Midterm date will be confirmed. Likely on Friday Oct 18th.

Final exam will be during exam period (Dec 7th to 20th)
CSC384: Reference Materials

Recommended Textbook (Not Required):

Artificial Intelligence: A Modern Approach

Stuart Russell and Peter Norvig

- Older editions are also useable---but you will have to search the text for the relevant sections.
- Sections most related to the lecture material will be indicated in the slides.
- We will not follow directly the approach of this book!
- http://aima.cs.berkeley.edu/
CSC384: Reference Materials

Alternate Book:

Computational Intelligence: A Logical Approach by David Poole and Alan Mackworth.

- Complete book is available online!

 http://artint.info/

Online Course:

- Various lectures are online, e.g.,

 https://www.udacity.com/courses
 Introduction to Artificial Intelligence.

http://ai.berkeley.edu/home.html
We will be using some of their software
CSC384: Prerequisites

• Some probability (STA247H/STA255H/STA257H).

• Good knowledge of python (assignments involve python programming).

• Knowledge of basic data structure (stacks, queues, priority queues), Graphs (depth-first search, best first search), familiarity with Big O notation and run time complexity (CSC263,265)
CSC384: Website

• The course web site:
 http://www.teach.cs.toronto.edu/~csc384h/fall/
 Primary source of more detailed information, announcements, etc.
 – Check the web site often.
 – Updates about assignments, clarifications etc. will be posted only on the web site.

• The piazza discussion site:
 https://piazza.com/utoronto.ca/fall2019/csc384/home

• Announcements via the website.
CSC384: Email

• Questions clarifying the course material cannot be answered by email.

• **Come to my office hours or to scheduled TA office hours instead.**

• Assignments clarifications etc. will be posted the course website, general discussion on piazza.

• Email can be used questions of a personal nature (e.g., accommodations for illness). OR for bug reports (website, course slides).
CSC384: Grading

Course work:
1. 4 Assignments (mainly programming): **44%** in total equally divided.
2. Midterm Exam worth **16%**
3. A Final Exam (3hrs) worth **40%**

You need a minimum of 40% on the Final to pass the course

Please note. Late assignments will not be accepted.
You get zero for anything past the due date, unless you have a documented medical excuse (you must hand in an official verification of student illness of injury form
http://www.illnessverification.utoronto.ca
Plagiarism

• See http://www.cs.toronto.edu/~fpitt/documents/plagiarism.html for the meaning of plagiarism, how to avoid it, and the U of T policies about it.
• All assignments are to be done individually.
• You can discuss the assignments with other students, but you should not give your code (or parts of your code) to other students. You should not look at another student’s code until after you have handed in your assignment (and the due date is past).
• Plagiarism has occurred in the past in this class and it has had very negative consequences for the students involved.