Tutorial Examples Uncertainty

December 1, 2017
Assessing Nets

Two astronomers in different parts of the world make measurements M_1 and M_2 of the number of stars N in some small region of the sky, using their telescopes. Normally, there is a small probability e or error of up to one star in each direction. Each telescope can also be badly out of focus with probability f. Let F_1 and F_2 be boolean variables with $F_i = true$ being that the i-th telescope is out of focus. If the telescope is out of focus then the scientist will always undercount by 3 or more stars (or, if N is 3 or less, fail to detect any stars at all).

(i) (ii) (iii)

(a) Which of these Bayesian Networks can correctly representation the preceeding information? (Note that additional edges in a network do not make the network incorrect, they only make the network redundant).

(b) Which is the best network? Explain.

(c) Write out the CPT for $Pr(M_1 | N, F_1)$ for the case where $M_1 \in \{0, 1, 2, 3, 4\}$ and $N \in \{1, 2, 3\}$. Express the entries in terms of e and f.

(d) Use your CPT for $Pr(M_1 | N, F_1)$ to compute the CPT for $Pr(M_1 | N)$ (again expressed in terms of e and f).

(e) Suppose $M_1 = 1$ and $M_2 = 3$. What are the possible numbers of stars.

4. Consider the Bayes net given below.

2

(a) What is the product decomposition specified by this network?

(b) Say that variable X_7 has 3 possible values, X_6 has 2 possible values, and X_4 has 4 possible values. How many values will be contained in the conditional probability table for X_6.

(c) Are X_1 and X_5 conditionally independent given X_2, given X_7, given X_6, given X_4?

(d) What are the relevant variables given the query X_3 and the evidence items X_6, given evidence X_5, given evidence X_4?
Assessing Nets

1. Which of these Bayesian Networks can correctly representation the preceeding information? (Note that additional edges in a network do not make the network incorrect, they only make the network redundant).

2. Which is the best network? Explain.

3. Write out the CPT for $Pr(M_1|N, F_1)$ for the case where $M_1 \in \{0, 1, 2, 3, 4\}$ and $N \in \{1, 2, 3\}$. Express the entries in terms of e and f.

4. Use your CPT for $Pr(M_1|N, F_1)$ to compute the CPT for $Pr(M_1|N)$ (again expressed in terms of e and f).

5. Suppose $M_1 = 1$ and $M_2 = 3$. What are the possible numbers of stars.