
Lecture 3, Part 1: Linear Classification

Roger Grosse

1 Introduction

Last time, we saw an example of a learning task called regression. There,
the goal was to predict a scalar-valued target from a set of features. This
time, we’ll focus on a slightly different task: binary classification, where
the goal is to predict a binary-valued target. Here are some examples of
binary classification problems:

• You want to train a medical diagnosis system to predict whether a
patient has a given disease. You have a training set consisting of a
set of patients, a set of features for those individuals (e.g. presence or
absence of various symptoms), and a label saying whether or not the
patient had the disease.

• You are running an e-mail service, and want to determine whether
a given e-mail is spam. You have a large collection of e-mails which
have been hand-labeled as spam or non-spam.

• You are running an online payment service, and want to determine
whether or not a given transaction is fraudulent. You have a labeled
training dataset of fraudulent and non-fraudulent transactions; fea-
tures might include the type of transaction, the amount of money, or
the time of day.

Like regression, binary classification is a very restricted kind of task.
Most learning problems you’ll encounter won’t fit nicely into one of these
two categories. Our motivation for focusing on binary classification is to
introduce several fundamental ideas that we’ll use throughout the course.
In this lecture, we discuss how to view both data points and linear classifiers
as vectors. Next lecture, we discuss the perceptron, a particular classifica-
tion algorithm, and use it as an example of how to efficiently implement a
learning algorithm in Python. Starting next week, we’ll look at supervised
learning in full generality, and see that regression and binary classification
are just special cases of a more general learning framework.

This lecture focuses on the geometry of classification. We’ll look in
particular at two spaces:

• The input space, where each data case corresponds to a vector. A
classifier corresponds to a decision boundary, or a hyperplane such
that the positive examples lie on one side, and negative examples lie
on the other side.

1

• Weight space, where each set of classification weights corresponds to
a vector. Each training case corresponds to a constraint in this space,
where some regions of weight space are “good” (classify it correctly)
and some regions are “bad” (classify it incorrectly).

The idea of weight space may seem pretty abstract, but it is very important
that you become comfortable with it, since it underlies nearly everything
we do in the course.

Using our understanding of input space and weight space, the limita-
tions of linear classifiers will become immediately apparent. We’ll see some
examples of datasets which are not linearly separable (i.e. no linear classi-
fier can correctly classify all the training cases), but which become linearly
separable if we use a basis function representation.

1.1 Learning goals

• Know what is meant by binary linear classification.

• Understand why an explicit threshold for a classifier is redundant.
Understand how we can get rid of the bias term by adding a “dummy”
feature.

• Be able to specify weights and biases by hand to represent simple
functions (e.g. AND, OR, NOT).

• Be familiar with input space and weight space.

– Be able to plot training cases and classification weights in both
input space and weight space.

• Be aware of the limitations of linear classifiers.

– Know what is meant by convexity, and be able to use convexity
to show that a given set of training cases is not linearly separable.

– Understand how we can sometimes still separate the classes using
a basis function representation.

2 Binary linear classifiers

We’ll be looking at classifiers which are both binary (they distinguish be-
tween two categories) and linear (the classification is done using a linear
function of the inputs). As in our discussion of linear regression, we assume
each input is given in terms of D scalar values, called input dimensions
or features, which we think summarize the important information for clas-
sification. (Some of the features, e.g. presence or absence of a symptom,
may in fact be binary valued, but we’re going to treat these as real-valued

anyway.) The jth feature for the ith training example is denoted x
(i)
j . All

of the features for a given training case are concatenated together to form a
vector, which we’ll denote x(i). (Recall that vectors and matrices are shown
in boldface.)

Associated with each data case is a binary-valued target, the thing we’re
trying to predict. By definition, a binary target takes two possible values,

2

which we’ll call classes, and which are typically referred to as positive
and negative. (E.g., the positive class might be “has disease” and the
negative class might be “does not have disease.”) Data cases belonging
to these classes are called positive examples and negative examples,
respectively. The training set consists of a set of N pairs (x(i), t(i)), where
x(i) is the input and t(i) is the binary-valued target, or label. Since the
training cases come with labels, they’re referred to as labeled examples.
Confusingly, even though we talk about positive and negative examples, the
t(i) typically take values in {0, 1}, where 0 corresponds to the “negative”
class. Sorry, you’ll just have to live with this terminology.

Our goal is to correctly classify all the training cases (and, hopefully,
examples not in the training set). In order to do the classification, we need
to specify a model, which determines how the predictions are computed
from the inputs. As we said before, our model for this week is binary linear
classifiers.

The way binary linear classifiers work is simple: they compute a linear
function of the inputs, and determine whether or not the value is larger
than some threshold r. Recall from Lecture 2 that a linear function of the
input can be written as

w1x1 + · · ·+ wDxD + b = wTx + b,

where w is a weight vector and b is a scalar-valued bias. Therefore, the
prediction y can be computed as follows:

z = wTx + b

y =

{
1 if z ≥ r
0 if z < r

This is the model we’ll use for the rest of the week.

2.1 Thresholds and biases

Dealing with thresholds is rather inconvenient, but fortunately we can get
rid of them entirely. In particular, observe that

wTx + b ≥ r ⇐⇒ wTx + b− r ≥ 0.

In other words, we can obtain an equivalent model by replacing the bias
with b − r and setting r to 0. From now on, we’ll assume (without loss
of generality) that the threshold is 0. Therefore, we rewrite the model as
follows:

z = wTx + b

y =

{
1 if z ≥ 0
0 if z < 0

In fact, it’s possible to eliminate the bias as well. We simply add another
input dimension x0, called a dummy feature, which always takes the value
1. Then

w0x0 + w1x1 + · · ·+ wDxD = w0 + w1x1 + · · ·+ wDxD,

3

so w0 effectively plays the role of a bias. We can then simply write

z = wTx.

Eliminating the bias often simplifies the statements of algorithms, so we’ll
sometimes use it for notational convenience. However, you should be aware
that, when actually implementing the algorithms, the standard practice is
to include the bias parameter explicitly.

2.2 Some examples

Let’s look at some examples of how to represent simple functions using
linear classifiers — specifically, AND, OR, and NOT.

Example 1. Let’s start with NOT, since it only involves a single
input. Here’s a “training set” of inputs and targets we’re trying
to match:

x1 t

0 1
1 0

Each of the training cases provides a constraint on the weights
and biases. Let’s start with the first training case. If x1 = 0,
then t = 1, so we need z = w1x1 + b = b ≥ 0. Technically we
could satisfy this constraint with b = 0, but it’s good practice to
avoid solutions where z lies on the decision boundary. Therefore,
let’s tentatively set b = 1.

Now let’s consider the second training case. The input is x1 = 1
and the target is t = 0, so we need z = w1 · 1 + b = w1 + 1 < 0.
We can satisfy this inequality with w1 = −2. This gives us our
solution: w1 = −2, b = 1.

Example 2. Now let’s consider AND. This is slightly more com-
plicated, since we have 2 inputs and 4 training cases. The train-
ing cases are as follows:

x1 x2 t

0 0 0
0 1 0
1 0 0
1 1 1

Just like in the previous example, we can start by writing out the
inequalities corresponding to each training case. We get:

b < 0

w2 + b < 0

w1 + b < 0

w1 + w2 + b > 0

4

From these inequalities, we immediately see that b < 0 and
w1, w2 > 0. The simplest way forward at this point is proba-
bly trial and error. Since the problem is symmetric with respect
to w1 and w2, we might as well decide that w1 = w2. So let’s
try b = −1, w1 = w2 = 1 and see if it works. The first and
fourth inequalities are clearly satisfied, but the second and third
are not, since w1+b = w2+b = 0. So let’s try making the bias a
bit more negative. When we try b = −1.5, w1 = w2 = 1, we see
that all four inequalities are satisfied, so we have our solution.

Following these examples, you should attempt the OR function on your
own.

3 The geometric picture

Now let’s move on to the main concepts of this lecture: data space and
weight space. These are the spaces that the inputs and the weight vectors
live in, respectively. It’s very important to become comfortable thinking
about these spaces, since we’re going to treat the inputs and weights as
vectors for the rest of the term.

In this lecture, we’re going to focus on two-dimensional input and weight
spaces. But keep in mind that this is a vast oversimplification: in practi-
cal settings, these spaces are typically many thousands, or even millions,
of dimensions. It’s pretty much impossible to visualize spaces this high-
dimensional.

3.1 Data space

The first space to be familiar with is data space, or input space. Each
point in this space corresponds to a possible input vector. (We’re going to
abuse mathematical terminology a bit by using “point” and “vector” in-
terchangeably.) It’s customary to represent positive and negative examples
with the symbols “+” and “−”, respectively.

Once we’ve chosen the weights w and bias b, we can divide the data
space into a region where the points are classified as positive (the posi-
tive region), and a region where the points are classified as negative (the
negative region). The boundary between these regions, i.e. the set where
wTx + b = 0, is called the decision boundary. Think back to your lin-
ear algebra class, and recall that the set determined by this equation is a
hyperplane. The set of points on one side of the hyperplane is called a
half-space. Examples are shown in Figure 1

When we plot examples in two dimensions, the hyperplanes are actually
lines. But you shouldn’t think of them as lines — you should think of them
as hyperplanes.

If it’s possible to choose a linear decision boundary that correctly clas-
sifies all of the training cases, the training set is said to be linearly sepa-
rable. As we’ll see later, not all training sets are linearly separable.

5

(a) (b) (c) (d)

Figure 1: (a) Training examples and for NOT function, in data space. (b)
NOT, in weight space. (c) Slice of data space for AND function correspond-
ing to x0 = 1. (d) Slice of weight space for AND function corresponding to
w0 = −1.

3.2 Weight space

As you’d expect from the name, weight vectors are also vectors, and the
space they live in is called weight space. In this section, we’ll assume
there is no bias parameter unless stated otherwise. (See Section 2.1.) Each
point in weight space is a possible weight vector.

Consider a positive training case (x, 1). The set of weight vectors which
correctly classify this training case is given by the linear inequality wTx ≥ 0.
(In fact, it’s exactly the sort of inequality we derived in Examples 1 and 2.)
Geometrically, the set of points satisfying this inequality is a half-space. For
lack of a better term, we’ll refer to the side which satisfies the constraint as
the good region, and the other side as the bad region. Similarly, the set
of weight vectors which correctly classify a negative training case (x, 0) is
given by wTx < 0; this is also a half-space. We’re going to completely ignore

the fact that one of these
inequalities is strict and the other
is not. The question of what
happens on the decision
boundaries isn’t very interesting.

Examples are shown in Figure 1.
The set of weight vectors which correctly classify all of the training

examples is the intersection of all the half-spaces corresponding to the in-
dividual examples. This set is called the feasible region. If the feasible
region is nonempty, the problem is said to be feasible; otherwise it’s said
to be infeasible.

When we draw the constraints in two dimensions, we typically draw the
line corresponding to the boundary of the constraint set, and then indicate
the good region with an arrow. As with our data space visualizations, you
should think of the boundary as a hyperplane, not as a line. There’s one constraint per training

example. What happened to the
fourth constraint in Figure 1(d)?

We can visualize three-dimensional examples by looking at slices. As
shown in Figure 2, these slices will resemble our previous visualizations,
except that the decision boundaries and constraints need not pass through
the origin.

4 The perceptron learning rule

The perceptron is a kind of binary linear classifier. Recall from last lecture
that this means it makes predictions by computing wTx+b and seeing if the
result is positive or negative. Here, x is the input vector, w is the weight
vector, and b is a scalar-valued bias. Recall as well that we can eliminate
the bias by adding a dummy dimension to x. For the perceptron algorithm,
it will be convenient to represent the positive and negative classes with 1
and -1, instead of 1 and 0 as we use in the rest of the course. Therefore,

6

Figure 2: Visualizing a slice of a 3-dimensional weight space.

the classification model is as follows:

z = wTx (1)

y =

{
1 if z ≥ 0
−1 if z < 0

(2)

Here’s a rough sketch of the perceptron algorithm. We examine each
of the training cases one at a time. For each input x(i), we compute the
prediction y(i) and see if it matches the target t(i). If the prediction is
correct, we do nothing. If it is wrong, we adjust the weights in a direction
that makes it more correct.

Now for the details. First of all, how do we determine if the prediction is
correct? We could simply check if y(i) = t(i), but this has a slight problem:
if x(i) lies exactly on the classification boundary, it is technically classified as
positive according to the above definition. But we don’t want our training
cases to lie on the decision boundary, since this means the classification may
change if the input is perturbed even slightly. We’d like our classifiers to be
more robust than this. Instead, we’ll use the stricter criterion

z(i)t(i) > 0. (3)

You should now check that this criterion correctly handles the various cases
that may occur.

The other question is, how do we adjust the weight vector? If the train-
ing case is positive and we classify it as negative, we’d like to increase the
value of z. In other words, we’d like

z′ = w′Tx > wTx = z, (4)

where w′ and w are the new and old weight vectors, respectively. The
perceptron algorithm achieves this using the update

w′ = w + αx, (5)

where α > 0. We now check that (4) is satisfied:

w′Tx = (w + αx)Tx (6)

= wTx + αxTx (7)

= wTx + α‖x‖2. (8)

7

Here, ‖x‖ represents the Euclidean norm of x. Since the squared norm is
always positive, we have z′ > z.

Conversely, if it’s a negative example which we mistakenly classified as
positive, we want to decrease z, so we use a negative value of α. Since it’s
possible to show that the absolute value of α doesn’t matter, we generally
use α = 1 for positive cases and α = −1 for negative cases. We can denote
this compactly with

w← w + tx. (9)

This rule is known as the perceptron learning rule.
Now we write out the perceptron algorithm in full:

For each training case (x(i), t(i)),

z(i) ← wTx(i)

If z(i)t(i) ≤ 0,

w← w + t(i)x(i)

In thinking about this algorithm, remember that we’re denoting the classes
with -1 and 1 (rather than 0 and 1, as we do in the rest of the course).

5 The limits of linear classifiers

Linear classifiers can represent a lot of things, but they can’t represent
everything. The classic example of what they can’t represent is the XOR
function. It should be pretty obvious from inspection that you can’t draw
a line separating the two classes. But how do we actually prove this?

5.1 Convex sets

An important geometric concept which helps us out here is convexity. A
set S is convex if the line segment connecting any two points in S must lie
within S. It’s not too hard to show that if S is convex, then any weighted
average of points in S must also lie within S. A weighted average of points
x(1), . . . ,x(N) is a point given by the linear combination

x(avg) = λ1x
(1) + · · ·+ λNx(N),

where 0 ≤ λi ≤ 1 and λ1 + · · · + λN = 1. You can think of the weighted
average as the center of mass, where the mass of each point is given by λi.

In the context of binary classification, there are two important sets that
are always convex:

1. In data space, the positive and negative regions are both convex. Both
regions are half-spaces, and it should be visually obvious that half-
spaces are convex. This implies that if inputs x(1), . . . ,x(N) are all
in the positive region, then any weighted average must also be in the
positive region. Similarly for the negative region.

2. In weight space, the feasible region is convex. The rough mathematical
argument is as follows. Each good region (the set of weights which
correctly classify one data point) is convex because it’s a half-space.
The feasible region is the intersection of all the good regions, so it
must be convex because the intersection of convex sets is convex.

8

Figure 3: The XOR function is not linearly separable.

Discriminating simple patterns
under translation with wrap-around

•  Suppose we just use pixels as
the features.

•  Can a binary threshold unit
discriminate between different
patterns that have the same
number of on pixels?
–  Not if the patterns can

translate with wrap-around!

pattern A

pattern A

pattern A

pattern B

pattern B

pattern B

Discriminating simple patterns
under translation with wrap-around

•  Suppose we just use pixels as
the features.

•  Can a binary threshold unit
discriminate between different
patterns that have the same
number of on pixels?
–  Not if the patterns can

translate with wrap-around!

pattern A

pattern A

pattern A

pattern B

pattern B

pattern B

Figure 4: No linear hypothesis can separate these two patterns in all possible
translations (with wrap-around).

5.2 Showing that functions aren’t linearly separable

Now let’s see how convexity can be used to show functions aren’t linearly
separable.

Example 3. Let’s return to the XOR example. Since the posi-
tive region is convex, if we draw the line segment connecting the
two positive examples (0, 1) and (1, 0), this entire line segment
must be classified as positive. Similarly, if we draw the line seg-
ment connecting the two negative examples (0, 0) and (1, 1), the
entire line segment must be classified as negative. But these two
line segments intersect at (0.5, 0.5), which means this point must
be classified as both positive and negative, which is impossible.
(See Figure 3.) Therefore, XOR isn’t linearly separable.

Example 4. Our last example was somewhat artificial. Let’s
now turn to a somewhat more troubling, and practically relevant,
limitation of linear classifiers. Let’s say we want to give a robot
a vision system which can recognize objects in the world. Since
the robot could be looking any given direction, it needs to be
able to recognize objects regardless of their location in its visual
field. I.e., it should be able to recognize a pattern in any possible
translation.

As a simplification of this situation, let’s say our inputs are
16-dimensional binary vectors and we want to distinguish two
patterns, A, and B (shown in Figure 4), which can be placed in
any possible translation, with wrap-around. (I.e., if you shift the
pattern right, then whatever falls off the right side reappears on
the left.) Thus, there are 16 examples of A and 16 examples of
B that our classifier needs to distinguish.

By convexity, if our classifier is to correctly classify all 16 in-
stances of A, then it must also classify the average of all 16

9

instances as A. Since 4 out of the 16 values are on, the aver-
age of all instances is simply the vectors (0.25, 0.25, . . . , 0.25).
Similarly, for it to correctly classify all 16 instances of B, it
must also classify their average as B. But the average is also
(0.25, 0.25, . . . , 0.25). Since this vector can’t possibly be classi-
fied as both A and B, this dataset must not be linearly separable.

More generally, we can’t expect any linear classifier to detect a
pattern in all possible translations. This is a serious limitation
of linear classifiers as a basis for a vision system.

5.3 Circumventing this problem by using feature represen-
tations

We just saw a negative result about linear classifiers. Let’s end on a more
positive note. In Lecture 2, we saw how linear regression could be made
more powerful using a basis function, or feature, representation. The same
trick applies to classification. Essentially, in place of z = wTx + b, we use
z = wTφ(x) + b, where φ(x) = (φ1(x), . . . , φD(x)) is a function mapping
input vectors to feature vectors. Let’s see how we can represent XOR using
carefully selected features.

Example 5. Consider the following feature representation for
XOR:

φ1(x) = x1

φ2(x) = x2

φ3(x) = x1x2

In this representation, our training set becomes

φ1(x) φ2(x) φ3(x) t

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Using the same techniques as in Examples 1 and 2, we find that
the following set of weights and biases correctly classifies all the
training examples:

b = −0.5 w1 = 1 w2 = 1 w3 = −2.

The only problem is, where do we get the features from? In this example,
we just pulled them out of a hat. Unfortunately, there’s no recipe for coming
up with good features, which is part of what makes machine learning hard.
But next week, we’ll see how we can learn a set of features by training a
multilayer neural net.

10

	Introduction
	Learning goals

	Binary linear classifiers
	Thresholds and biases
	Some examples

	The geometric picture
	Data space
	Weight space

	The perceptron learning rule
	The limits of linear classifiers
	Convex sets
	Showing that functions aren't linearly separable
	Circumventing this problem by using feature representations

