
Generalization

CSC311, Fall 2022

Based on notes by Roger Grosse

1 Introduction

When we train a machine learning model, we don’t just want it to learn to
model the training data. We want it to generalize to data it hasn’t seen
before. Fortunately, there’s a convenient way to measure an algorithm’s
generalization performance: we measure its performance on a held-out test
set, consisting of examples it hasn’t seen before. If an algorithm works well
on the training set but fails to generalize, we say it is overfitting. This note
will cover the basics of generalization including validation, the bias variance
tradeoff, and a review of the regularization strategies we’ve seen so far.

1.1 Learning Goals

• Know the difference between training, validation, and test sets.

• Be able to reason qualitatively about how training and test error de-
pend on the size of the model, the number of training examples, and
the number of training iterations.

• Decompose generalization error into bias, variance, and Bayes error.

• Review several strategies to improve generalization: reducing model
capacity, L2 regularization / weight decay, early stopping, ensembles

2 Measuring generalization

So far in this course, we’ve trained our models by optimizing a cost function
that is defined as the average loss over the training set:

1

N

N∑
i=1

L(y(x(i)), t(i)). (1)

But we don’t just want to get the training examples right; we want our
models to generalize to novel instances they haven’t seen before. To estimate
generalization performance, we can partition our data into three subsets:

• A training set, a set of training examples the model is trained on. We saw a variation on this
basic strategy called cross-
validation, in Homework 1,
which is often used in sit-
uations with small datasets,
i.e. less than a few thousand
examples.

• A validation set, which is used to tune hyperparameters such as the
number of hidden units, or the learning rate.

• A test set, which is used to measure the generalization performance.

1



The losses on these subsets are called training, validation, and test
loss, respectively. Hopefully it’s clear why we need separate training and
test sets: if we train on the test data, we have no idea whether the model
is correctly generalizing, or whether it’s simply memorizing the training
examples. It’s a more subtle point why we need a separate validation set.

• We can’t tune hyperparameters on the training set, because we want
to choose values that will generalize. For instance, if we choose a
very expressive model that easily memorizes the training data, it will
generalize poorly. Tuning on the training data could lead us to choose
such a model.

• We also can’t tune them on the test set, because that would be “cheat-
ing.” We’re only allowed to use the test set once, to report the final
performance. If we “peek” at the test data by using it to tune hyper-
parameters, it will no longer give a realistic estimate of generalization
performance.

The most basic strategy for tuning hyperparameters is to do a grid
search: for each hyperparameter, choose a set of candidate values. Sep-
arately train models using all possible combinations of these values, and
choose whichever configuration gives the best validation error. A closely
related alternative is random search: train a bunch of models using ran-
dom configurations of the hyperparameters, and pick whichever one has the
best validation error. The advantage of random search over grid search is as
follows: suppose your model has 10 hyperparameters, but only two of them
are actually important. (You don’t know which two.) It’s infeasible to do
a grid search in 10 dimensions, but random search still ought to provide
reasonable coverage of the 2-dimensional space of the important hyperpa-
rameters. On the other hand, in a scientific setting, grid search has the
advantage that it’s easy to reproduce the exact experimental setup.

3 Reasoning about generalization

If a model performs well on the training set but generalizes badly, we say it
is overfitting. A model might overfit if the training set contains acciden-
tal regularities. For instance, if the task is to classify handwritten digits,
it might happen that in the training set, all images of 9’s have pixel num-
ber 122 on, while all other examples have it off. The model might learn to
exploit this accidental regularity, thereby correctly classifying all the train-
ing examples of 9’s, without learning the true regularities. If this property
doesn’t hold on the test set, the model will generalize badly.

As an extreme case, remember the neural network we constructed in
Lecture 4, which was able to learn arbitrary Boolean functions? It has a
separate hidden unit for every possible input configuration. This model is
able to memorize a training set, i.e. learn the correct answer for every
training example, even though it will have no idea how to classify novel in-
stances. The problem is that this model has too large a capacity, i.e. ability
to remember information about its training data. Capacity isn’t a formal
term, but corresponds roughly to the number of trainable parameters.

2



Figure 1: (left) Qualitative relationship between the number of training
examples and training/test error. (right) Qualitative relationship between
the number of parameters (or model capacity) and training/test error.

In order to reason qualitatively about generalization, let’s think about
how the training and generalization error vary as a function of the number
of training examples and the number of parameters. Having more train-
ing data should only help generalization: for any particular test example,
the larger the training set, the more likely there will be a closely related
training example. Also, the larger the training set, the fewer the accidental
regularities, so the model will be forced to pick up the true regularities.
Therefore, generalization error ought to improve as we add more training
examples. On the other hand, small training sets are easier to memorize If the test error increases with

the number of training examples,
that’s a sign that you have a bug
in your code or that there’s some-
thing wrong with your model.

than large ones, so training error tends to increase as we add more exam-
ples. As the training set gets larger, the two will eventually meet. This is
shown qualitatively in Figure 1.

Now let’s think about the model capacity. As we add more parameters,
it becomes easier to fit both the accidental and the true regularities of the
training data. Therefore, training error improves as we add more parame-
ters. The effect on generalization error is a bit more subtle. If the model has
too little capacity, it generalizes badly because it fails to pick up the reg-
ularities (true or accidental) in the data (we say that it is underfitting).
If it has too much capacity, it will memorize the training set and fail to
generalize. Therefore, the effect of capacity on test error is non-monotonic:
it decreases, and then increases. We would like to pick models that have
enough capacity to learn the true regularities in the training data, but not
enough capacity to simply memorize the training set or exploit accidental
regularities. This is shown qualitatively in Figure 1.

3.1 Bias and variance

For now, let’s focus on squared error loss. We’d like to mathematically
model the generalization error. To formalize this, we need to introduce the
data generating distribution, a hypothetical distribution pD(x, t) that
all the training and test data are assumed to have come from. We don’t
need to assume anything about the form of the distribution, so the only
nontrivial assumption we’re making here is that the training and test data
are drawn from the same distribution.

Suppose we have a test input x, and we make a prediction y (which,

3



for now, we treat as arbitrary). We’re interested in the expected error
if the targets are sampled from the conditional distribution pD(t |x). By
applying the properties of expectation and variance, we can decompose this
expectation into two terms: This derivation makes use of the

formula Var[z] = E[z2]−E[z]2 for
a random variable z.E[(y − t)2 |x] = E[y2 − 2yt+ t2 |x]

= y2 − 2yE[t |x] + E[t2 |x] by linearity of expectation

= y2 − 2yE[t |x] + E[t |x]2 + Var[t |x] by the formula for variance

= (y − E[t |x])2 + Var[t |x]

, (y − y?)2 + Var[t |x],

where in the last step we introduce y? = E[t |x], which is the best possible
prediction we can make, because the first term is nonnegative and the second
term doesn’t depend on y. The second term is known as the Bayes error,
and corresponds to the best possible generalization error we can achieve
even if we model the data perfectly.

Now let’s treat y as a random variable. Assume we repeat the following
experiment: sample a training set randomly from pD, train our model,
and compute its predictions on x. If we suppress the dependence on x for
simplicity, the expected squared error decomposes as:

E[(y − t)2] = E[(y − y?)2] + Var(t)

= E[y2? − 2y?y + y2] + Var(t)

= y2? − 2y?E[y] + E[y2] + Var(t) by linearity of expectation

= y2? − 2y?E[y] + E[y]2 + Var(y) + Var(t) by the formula for variance

= (y? − E[y])2︸ ︷︷ ︸
bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

The first term is the bias, which tells us how far off the model’s average
prediction is. The second term is the variance, which tells us about the
variability in its predictions as a result of the choice of training set, i.e. the
amount to which it overfits the idiosyncrasies of the training data. The
third term is the Bayes error, which we have no control over. So this de-
composition is known as the bias-variance decomposition.

To visualize this, suppose we have two test examples, with targets
(t(1), t(2)). Figure 2 is a visualization in output space, where the axes
correspond to the outputs of the model on these two examples. It shows Understand why output space

is different from input space or
weight space.

the test error as a function of the predictions on these two test examples;
because we’re measuring mean squared error, the test error takes the shape
of a quadratic bowl. The various quantities computed above can be seen in
the diagram:

• The generalization error is the average squared length ‖y− t‖2 of the
line segment labeled residual.

• The bias term is the average squared length ‖E[y] − y∗‖2 of the line
segment labeled bias.

• The variance term is the spread in the green x’s.

• The Bayes error is the spread in the black x’s.

4



Figure 2: Schematic relating bias, variance, and error. Top: If the model
is underfitting, the bias will be large, but the variance (spread of the green
x’s) will be small. Bottom: If the model is overfitting, the bias will be
small, but the variance will be large.

5



4 Reducing overfitting

Now that we’ve talked about generalization error, let’s review some strate-
gies for improving generalization by reducing overfitting.

4.1 Reducing capacity

Remember the nonmonotonic relationship between model capacity and gen-
eralization error from Figure 1? We saw this effect in Lecture 2 when we
increased degree M of the polynomial feature map in polynomial regression.
This immediately suggests a strategy: tune the model capacity (e.g., the
degree M in polynomial regression, or the number of layers / layer sizes in
a neural network) on a validation set in order to find the sweet spot, which
has enough capacity to learn the true regularities, but not enough to overfit.

Reducing capacity has an important drawback: it might make the model
too simple to learn the true regularities in the data. Therefore, it’s often
preferable to keep the capacity high, but prevent it from overfitting in other
ways. We’ll discuss some such alternatives now.

4.2 Regularization and weight decay

So far, all of the cost functions we’ve discussed have consisted of the average
of some loss function over the training set. Often, we want to add another
term, called a regularization term, or regularizer, which penalizes hy-
potheses we think are somehow pathological and unlikely to generalize well.
The total cost, then, is

J (θ) =
1

N

N∑
i=1

L(y(x,θ), t)︸ ︷︷ ︸
training loss

+ R(θ)︸ ︷︷ ︸
regularizer

(2)

For instance, suppose we are training a linear regression model with two
inputs, x1 and x2, and these inputs are identical in the training set. The
two sets of weights shown in Figure 3 will make identical predictions on the
training set, so they are equivalent from the standpoint of minimizing the
loss. However, Hypothesis A is somehow better, because we would expect it
to be more stable if the data distribution changes. E.g., suppose we observe
the input (x1 = 1, x2 = 0) on the test set; in this case, Hypothesis A will
predict 1, while Hypothesis B will predict -8. The former is probably more
sensible. We would like a regularizer to favor Hypothesis A by assigning it
a smaller penalty.

One such regularizer which achieves this is L2 regularization; for a This is an abuse of terminol-
ogy; mathematically speaking,
this really corresponds to the
squared L2 norm.

linear model, it is defined as follows:

RL2(w) =
λ

2

D∑
j=1

w2
j . (3)

L2 regularization tends to favor hypotheses where the norms of the weights
are smaller. For instance, in the above example, with λ = 1, it assigns
a penalty of 1

2(12 + 12) = 1 to Hypothesis A and 1
2((−8)2 + 102) = 82 to

6



Figure 3: Two sets of weights which make the same predictions assuming
inputs x1 and x2 are identical.

Hypothesis B, so it strongly prefers Hypothesis A. Because the cost function
includes both the training loss and the regularizer, the training algorithm
is encouraged to find a compromise between the fit to the training data and
the norms of the weights. L2 regularization can be generalized to neural
nets in the obvious way: penalize the sum of squares of all the weights in
all layers of the network.

It’s pretty straightforward to incorporate regularizers into the stochastic
gradient descent computations. In particular, by linearity of derivatives,

∂J
∂θj

=
1

N

N∑
i=1

∂L(i)

∂θj
+
∂R
∂θj

. (4)

If we derive the SGD update in the case of L2 regularization, we get an
interesting interpretation. Observe that in SGD, the regu-

larizer derivatives do not need to
be estimated stochastically.

θj ← θj − α
∂J (i)

∂θj
(5)

= θj − α

(
∂L(i)

∂θj
+
∂R
∂θj

)
(6)

= θj − α

(
∂L(i)

∂θj
+ λθj

)
(7)

= (1− αλ)θj − α
∂L(i)

∂θj
. (8)

In each iteration, we shrink the weights by a factor of 1 − αλ. For this
reason, L2 regularization is also known as weight decay.

Regularization is one of the most fundamental strategies in machine
learning. Regularizers are sometimes viewed as penalizing the “complexity”
of a model, or favoring explanations which are “more likely.”

4.3 Early stopping

Think about how the training and test error change over the course of
training. Clearly, the training error ought to continue improving, since we’re
optimizing the training error. (If you find the training error going up, there
may be something wrong with your optimizer.) The test error generally
improves at first, but it may eventually start to increase as the model starts
to overfit. Such a pattern is shown in Figure 4. (Curves such as these are
referred to as training curves.) This suggests an obvious strategy: stop

7



Figure 4: Training curves, showing the relationship between the number of
training iterations and the training and test error. (left) Idealized version.
(right) Accounting for fluctuations in the error, caused by stochasticity in
the SGD updates.

the training at the point where the generalization error starts to increase.
This strategy is known as early stopping. Of course, we can’t do early
stopping using the test set, because that would be cheating. Instead, we
would determine when to stop by monitoring the validation error during
training.

Unfortunately, implementing early stopping is a bit harder than it looks
from this cartoon picture. The reason is that the training and validation
error fluctuate during training (because of stochasticity in the gradients), so
it can be hard to tell whether an increase is simply due to these fluctuations.
One common heuristic is to space the validation error measurements far
apart, e.g. once per epoch. If the validation error fails to improve after one
epoch (or perhaps after several consecutive epochs), then we stop training.
This heuristic isn’t perfect, and if we’re not careful, we might stop training
too early.

4.4 Ensembles

Think back to Figure 2. If you average the predictions of multiple models
trained independently on separate training sets, this reduces the variance of
the predictions, which can lead to lower loss. Of course, we can’t actually
carry out the hypothetical procedure of sampling training sets indepen-
dently (otherwise we’re probably better off combining them into one big
training set). We can try to simulate the effect of independent training sets
by somehow injecting variability into the training procedure. Here some
ways of injecting variability:

• Train on random subsets of the full training data. This procedure is
known as bagging.

• Train different models or use different learning algorithms.

The set of trained models whose predictions we’re combining is known as
an ensemble. Ensembles often generalize quite a bit better than single
models. This benefit is significant enough that the winning entries for most

8



of the major machine learning competitions (e.g. ImageNet, Netflix, etc.)
used ensembles.

It’s possible to prove that ensembles outperform individual models in the
case of convex loss functions. In particular, suppose the loss function L is
convex as a function of the outputs y. Then, by the definition of convexity, This isn’t the same as the cost

being convex as a function of θ.
Lots of loss functions are con-
vex with respect to y, such as
squared error or cross-entropy.

L(λ1y1+· · ·+λNyN , t) ≤ λ1L(y1, t)+· · ·+λNL(yN , t) for λi ≥ 0,
∑
i

λi = 1. (9)

Hence, the average of the predictions must beat the average losses of the
individual predictions. Note that this is true regardless of where the ys came
from. They could be outputs of different neural networks, or completely
different learning algorithms, or even numbers you pulled out of a hat. The This result is closely related to

the Rao-Blackwell theorem from
statistics.

guarantee doesn’t hold for non-convex cost functions (such as error rate),
but ensembles still tend to be very effective in practice.

9


	Introduction
	Learning Goals

	Measuring generalization
	Reasoning about generalization
	Bias and variance

	Reducing overfitting
	Reducing capacity
	Regularization and weight decay
	Early stopping
	Ensembles


