CSC 311: Introduction to Machine Learning Tutorial 8 - Probabilistic Models

University of Toronto, Summer 2023

- Maximum likelihood estimation
- Bayesian inference basics

Maximum Likelihood Estimation (MLE)

- Goal: estimate parameters θ from observed data $\{x_1, \cdots, x_N\}$
- Main idea: We should choose parameters that assign high probability to the observed data:

$$\hat{\theta} = \operatorname{argmax} L(\theta; x_1, \cdots, x_N)$$

Three steps for computing MLE

• Write down the likelihood objective:

$$L(\theta; x_1, \cdots, x_N) = \prod_{i=1}^N L(\theta; x_i)$$

2 Transform to log likelihood:

$$l(\theta; x_1, \cdots, x_N) = \sum_{i=1}^N \log L(\theta; x_i)$$

• Compute the critical point:

$$\frac{\partial l}{\partial \theta} = 0$$

X is a discrete random variable with the following probability mass function $(0 \le \theta \le 1 \text{ is an unknown parameter})$:

Χ	0	1	2	3
$P(\mathbf{X})$	$2\theta/3$	$\theta/3$	$2(1-\theta)/3$	$(1-\theta)/3$

- The following 10 independent observations were taken from \mathbf{X} : $\{3, 0, 2, 1, 3, 2, 1, 0, 2, 1\}$.
- What is the MLE for θ ?

$$L(\theta) = P(X = 3)P(X = 0)P(X = 2)P(X = 1)P(X = 3)$$

× $P(X = 2)P(X = 1)P(X = 0)P(X = 2)P(X = 1)$
= $(\frac{2\theta}{3})^2(\frac{\theta}{3})^3(\frac{2(1-\theta)}{3})^3(\frac{(1-\theta)}{3})^2$

$$l(\theta) = \log L(\theta)$$

= $2(\log \frac{2}{3} + \log \theta) + 3(\log \frac{1}{3} + \log \theta)$
+ $3(\log \frac{2}{3} + \log(1 - \theta)) + 2(\log \frac{2}{3} + \log(1 - \theta))$
= $C + 5(\log \theta + \log(1 - \theta))$

CSC311-Tut8

Step 3: critical points

$$\begin{aligned} \frac{\partial l}{\partial \theta} &= 0\\ \rightarrow 5(\frac{1}{\theta} - \frac{1}{1 - \theta}) &= 0\\ \rightarrow \hat{\theta} &= 0.5 \end{aligned}$$

• X is a discrete random random variable following the poisson distribution:

$$P(\mathbf{X} = x) = \frac{e^{-\lambda}\lambda^x}{x!}$$

- Suppose we observe N samples of **X**: $\{x_1, \dots, x_N\}$
- What is the MLE for λ ?

Three steps

1 Likelihood objective:

$$L(\lambda) = \prod_{i=1}^{N} \frac{e^{-\lambda} \lambda_i^x}{x_i!}$$

2 Log likelihood:

$$l(\lambda) = -N\lambda + \log \lambda \sum_{i=1}^{N} x_i - \sum_{i=1}^{N} \log(x_i!)$$

• Critical point:

$$\frac{\partial l}{\partial \lambda} = 0 \to -N + \frac{1}{\lambda} \sum_{i=1}^{N} x_i \to \hat{\lambda} = \frac{\sum_{i=1}^{N} x_i}{N}$$

Suppose that X_1, \dots, X_n form a random sample from a uniform distribution on the interval $(0, \theta)$, where of the parameter $\theta > 0$ but is unknown. Please find MLE of θ .

Bayesian Inference Basics

- Bayesian interprets probability as degrees of beliefs.
- Bayesian treats parameters as random variables.
- Bayesian learning is updating our beliefs (probability distribution) based on observations.

- MLE is the standard frequentist inference method.
- Bayesian and frequentist are the two main approaches in statistical machine learning. Some of their ideological differences can be summarized as:

	Frequentist	Bayesian
Probability is	relative frequency	degree of beliefs
Parameter θ is	unknown constant	random variable

¹Han Liu and Larry Wasserman, Statistical Machine Learning, 2014

The Bayesian approach to machine learning 2

- We define a model that expresses qualitative aspects of our knowledge (eg, forms of *distributions*, independence assumptions). The model will have some unknown *parameters*.
- We specify a *prior* probability distribution for these unknown parameters that expresses our beliefs about which values are more or less likely, before seeing the data.
- We gather data.
- We compute the *posterior* probability distribution for the parameters, given the observed data.
- We use this posterior distribution to draw scientific conclusions and make predictions

²Radford M. Neal, Bayesian Methods for Machine Learning, NIPS 2004 tutorial Intro ML (UofT) CSC311-Tut8 16/19

• The posterior distribution is computed by the Bayes' rule:

 $P(parameter|data) = \frac{P(parameter)P(data|parameter)}{P(data)}$

• The denominator is just the required normalizing constant. So as a proportionality, we can write:

posterior \propto prior \times likelihood

- Suppose you have a Beta(4, 4) prior distribution on the probability θ that a coin will yield a 'head' when spun in a specified manner.
- The coin is independently spun ten times, and 'heads' appear fewer than 3 times. You are not told how many heads were seen, only that the number is less than 3.
- Calculate your exact posterior density (up to a proportionality constant) for θ and sketch it.

Questions?

?

Intro ML (UofT)

CSC311-Tut8

19 / 19