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Information Theory

How do we choose between splits when constructing decision trees?

Measure how much information we can gain from a given split.

This quantity is call Information Gain!

It is an information theoretic concept that quantifies for a r.v. how
much uncertainty is removed if we know its value.

Let’s review some information theory basics and definitions.
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Uncertainty and Entropy

Uncertainty is like the main building block of many information theory
concepts.

We don’t always have all the information about all the variables
we care about.

We use probabilities about events to make informed guesses.

As we learn more information, we can increase confidence, or
decrease uncertainty, in our guess.
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Uncertainty and Entropy

Uncertainty is the main building block of many information theory
concepts.

This uncertainty is quantified as Entropy of the random variable,
H(X). Mathematically,

For a discrete r.v.:

H(X) = −
∑
x∈X

p(x) log2 p(x)

For a continuous r.v.:

H(X) = −
∫
X
p(x) log2 p(x)dx
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Joint Entropy

We might be interested in the uncertainty in two or more r.v.s
that have some joint distribution.

This is quantified as the Joint Entropy of the r.v.s in question.

Its mathematical definition follows analogously to that of entropy
but with joint probabilities.

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y)

Exercise: Can you write down the continuous version of this definition?
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Conditional Entropy

We are often interested in the uncertainty in one r.v. once we
know the value of another.

This is quantified as the Conditional Entropy of the first given the
second.

Its mathematical definition follows analogously to that of entropy
with conditional probabilities.

H(Y |X) = −
∑
x∈X

p(x)H(Y |X = x)
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Conditional Entropy

We can expand the terms further:

H(Y |X) = −
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

∑
y∈Y

p(x)p(y|x) log2 p(y|x)

= −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(y|x)

Exercise: Continuous version?
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Aside: Logarithm Properties

Some useful properties of logs

log(ab) = log a+ log b

log(a/b) = log a− log b

For instance, in the previous slide we encountered log2 p(y|x) which can
be written as

log2
p(x, y)

p(x)
= log2 p(x, y)− log2 p(x)
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Information Gain

Finally, we can now quantify a notion of Information Gain, aka Mutual
Information between r.v.s X and Y .

This quantifies how much more certain (or less uncertain) we are
about Y if we know the value of X.

In other words, how much uncertainty (or entropy) is reduced in Y
once we are given X?

Definition: take the entropy of Y and subtract the conditional
entropy of Y given X.

IG(Y |X) = H(Y )−H(Y |X)
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Exercises: Information Theory

We now practice computing some of these quantities and prove some
standard equalities and inequalities of information theory, which
appear in many contexts in machine learning and elsewhere.
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Exercise 1

Let p(x, y) be given by

0 1

0 1
3

1
3

1 0 1
3

Compute

H(X), H(Y )

H(X|Y ), H(Y |X)

H(X,Y )

IG(Y |X)
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Exercise 2

Prove that entropy H(X) is non-negative, i.e., H(X) ≥ 0.
For reference, we can use the discrete definition:

H(X) = −
∑
x∈X

p(x) log2 p(x)
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Exercise 3

Prove the Chain Rule for entropy, i.e.

H(X,Y ) = H(X|Y ) +H(Y ) = H(Y |X) +H(X)
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Exercise 4

Prove that H(X,Y ) ≥ H(X).
Hint: you can use results of the first two exercises.
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Linear Regression Review

Linear Regression is the problem of predicting a target variable y as a
linear combination of input features x.
Fixed inputs given to us:

Features: x = (x1, x2, . . . , xD) ∈ RD

Targets: t ∈ R
Parameters that we initialize and learn:

Weights: w = (w1, w2, . . . , wD) ∈ RD

Bias: b ∈ R
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Data, Parameters and the Model

Data is provided to us as (x, t) tuples.

Weights and biases, w and b, are parameters we need to learn.

We model the predictions y as:

y = f(x) =
D∑
i=1

wixi + b

= wTx + b

We need to find w and b such that y is close to the ground truth t.
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Objective Function

To learn and evaluate the linear regression model, we need a measure
of “closeness”, formally called a Loss or Objective Function, which we
need to minimize.

Squared Error Loss: L(y, t) = 1
2(y − t)2.

For N data samples, we average the individual losses over all
samples:

J (w) =
1

2N

N∑
i=1

(y(i) − t(i))2

=
1

2N

N∑
i=1

(wTx(i) + b− t(i))2
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Exercise: Linear Regression Bias-Variance

Assume the optimal weights are given by w∗ and for all data samples

t(i) = w∗Tx(i) + ε(i)

where ε(i) are independent random noise variables.
Further, recall that the loss function is given by

J (w) =
1

2N
||y − t||2

18 / 19



Exercise: Linear Regression Bias-Variance

Using the above, derive the bias-variance decomposition for the linear
regression problem.
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