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Final examination

The final examination covers everything you have learned thus far.

You can take one A4 sized cheat sheet (double-sided) to the exam
(do not staple two sheets to create a double sided sheet).
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Final exam review

Cover example questions on several topics:

Bias-Variance Decomposition

Bagging / Boosting

Probabilistic Models (Nav̈e Bayes, Gaussian Discriminant)

Principal Component Analysis (Matrix factorization,
Autoencoder)

K-Means / EM
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Useful mathematical concepts

Working with logs / exponents

MLE, MAP, Generative modeling

Independence, conditional independence

Bayes rule, law of total probability, marginalization.

Properties of Covariance matrices (i.e., positive semidefinite) /
spectral decomposition for PCA.

Definition of expectation. Expectation/variance of a sum of
variables
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Bias-Variance Decomposition1

E[(y − t)2] = (y? − E[y])2︸ ︷︷ ︸
bias

+ Var(y)︸ ︷︷ ︸
variance

+ Var(t)︸ ︷︷ ︸
Bayes error

We just split the expected loss into three terms:
I bias: how wrong the expected prediction is (corresponds to

underfitting)
I variance: the amount of variability in the predictions (corresponds

to overfitting)
I Bayes error: the inherent unpredictability of the targets

Even though this analysis only applies to squared error, we often
loosely use “bias” and “variance” as synonyms for “underfitting”
and “overfitting”.

1From Lecture 5, Slide 49
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Ensembling Methods (Bagging/Boosting)

Bagging: Train independent models on random subsets of the full
training data

Boosting: Train models sequentially, each time focusing on
examples the previous model got wrong

Bias Variance Training Ensemble Elements

Bagging ≈ ↓ Parallel Minimize correlation

Boosting ↓ ↑ Sequential High dependency
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Ensembling Methods (Bagging/Boosting)

Question: Suppose your classifier achieves poor accuracy on both the
training and test sets. Which would be a better choice to try to
improve the performance: bagging or boosting? Justify your answer.

Answer:

The model is underfitting, has high bias

Bagging reduces variance, whereas boosting reduces the bias

Therefore, use boosting
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Probabilistic Models: Naive Bayes

Question: True or False: Naive Bayes assumes that all features are
independent.

Answer: False. Naive Bayes assumes that the input
features xi are conditionally independent give the class c:

p(c, x1, . . . , xD) = p(c)p(x1|c) · · · p(xD|c)
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Probabilistic Models: Naive Bayes

Question: Which of the following diagrams could be a visualization of
a Naive Bayes classifier? Select all that applies.

(a) (b)

(c) (d)

Answer: A, D
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Probabilistic Models: Nav̈e Bayes

Question:

Consider the following problem, in which we have two classes:
{Tainted, Clean}, and each data x has 3 attributes: (a1, a2, a3).

These attributes are also binary variables: a1 ∈ {on, off},
a2 ∈ {blue, red}, a3 ∈ {light, heavy}.
We are given a training set as follows:

1. Tainted: (on, blue, light) (off, red, light) (on, red, heavy)
2. Clean: (off, red, heavy) (off, blue, light) (on, blue, heavy)

(A) Manually construct Nav̈e Bayes Classifier based on the above
training data. Compute the following probability tables: a) the class
prior probability, b) the class conditional probabilities of each attribute.
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Probabilistic Models: Nav̈e Bayes

(a) Class prior probability:

p(c = Tainted) = 3/6 = 1/2,

p(c = Clean) = 1/2

(b) The class conditional distributions:

p(a1 = on|c = Tainted) = 2/3, p(a1 = off |c = Tainted) = 1/3

p(a2 = blue|c = Tainted) = 1/3, p(a2 = red|c = Tainted) = 2/3

p(a3 = light|c = Tainted) = 2/3,
p(a3 = heavy|c = Tainted) = 1/3

p(a1 = on|c = Clean) = 1/3, p(a1 = off |c = Clean) = 2/3

p(a2 = blue|c = Clean) = 2/3, p(a2 = red|c = Clean) = 1/3

p(a3 = light|c = Clean) = 1/3, p(a3 = heavy|c = Clean) = 2/3
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Probabilistic Models: Nav̈e Bayes

(B) Classify a new example (on, red, light) using the classifier you
built above. You need to compute the posterior probability (up to a
constant) of class given this example.

Answer: To classify x = (on, red, light), we have:

p(c|x) =
p(c)p(x|c)

p(c = Tainted)p(x|c = Tainted) + p(c = Clean)p(x|c = Clean)

Computing each term:

p(c = T )p(x|c = T ) =
(
p(c = T )p(a1 = on|c = T )p(a2 = red|c = T )

p(a3 = light|c = T )
)

=
1

2
× 2

3
× 2

3
× 2

3

=
8

54
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Probabilistic Models: Nav̈e Bayes

(B) Classify a new example (on, red, light) using the classi
er you built above. You need to compute the posterior probability (up
to a constant) of class given this example.

Answer: Similarly,

p(c = Clean)p(x|c = Clean) =
1

2
× 1

3
× 1

3
× 1

3
=

1

54

Therefore, p(c = Tainted|x) = 8/9 and p(c = Clean|x) = 1/9,
according to Nav̈e Bayes classifier this example should be classified as
Tainted.
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Principal Component Analysis (PCA)

1. The principal components of a dataset can be found by either
minimizing an objective or, equivalently, maximizing a different
objective. In words, describe the objective in each case using a single
sentence.

Answer:

Minimizing: Reconstruction error i.e. the distance between the
original point and its projection onto the principal component
subspace

Maximizing: Variance between the code vectors i.e. the variance
between the coordinate representations of the data in the principal
component subspace
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Principal Component Analysis (PCA)

2. The figure below shows a two-dimensional dataset. Draw the vector
corresponding to the second principal component.

3 2 1 0 1 2 3
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0.0

0.5

1.0
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Principal Component Analysis (PCA)

2. The figure below shows a two-dimensional dataset. Draw the vector
corresponding to the second principal component.
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K-Means / EM

1. What is the difference between K-Means and Soft K-Means
algorithm?

Answer:

Hard K-Means assigns a point to 1 particular cluster, whereas Soft
K-Means assigns responsibilities (summing to 1) across clusters
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K-Means / EM

2. K-means algorithm can be seen as a special case of the EM
algorithm. Describe the steps in K-means that correspond to the E and
M steps, respectively.

Answer:

Assignment step in K-Means is similar to the E-step in EM,
computing responsibilities assessment

Refitting step in K-Means minimizes the cluster distance while
M-step in EM maximizes generative likelihood

Soft K-Means is equivalent to having spherical covariance (shared
diagonal) while EM can have arbitrary covariance.
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