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Classification: Diabetes Example

@ Observation per patient: White blood cell count & glucose value.

10 20 30 40 50 80 70

@ p(x |t =k) for each class is shaped like an ellipse
= we model each class as a multivariate Gaussian
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Overview

o Last week, we started our tour of probabilistic models, and
introduced the fundamental concepts in the discrete setting.
e Continuous random variables:

» Manipulating Gaussians to tackle interesting problems requires lots
of linear algebra, so we’ll begin with a linear algebra review.

> Additional reference: See also Chapter 4 of Mathematics for
Machine Learning, by Desienroth et al.
https://mml-book.github.io/
o Regression: Linear regression as maximum likelihood estimation
under a Gaussian distribution.

o Generative classifier for continuous data: Gaussian
discriminant analysis, a Bayes classifier for continuous variables.

o Next week’s lecture (PCA) draws heavily on today’s linear algebra
content, so be sure to review it offline.
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https://mml-book.github.io/

@ Linear Algebra Review
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Eigenvectors and Eigenvalues

o Let B be a square matrix.

An eigenvector of B is a vector v such that
Bv=)\v

for a scalar A\, which is called an eigenvalue.

e A matrix of size D x D has at most D distinct eigenvalues,
but may have fewer.

e We will focus on symmetric matrices.
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Spectral Theorem

For a symmetric D x D matrix,

o All of the eigenvalues are real-valued.

@ There is a full set of D linearly independent eigenvectors.

These eigenvectors form a basis for RP.
e The eigenvectors can be chosen to be real-valued.

@ The eigenvectors can be chosen to be orthonormal.
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Spectral Decomposition

Factorize a symmetric matrix A with the Spectral Decomposition:
A=QAQ’

where
e Q is an orthogonal matrix
» The columns q; of Q are eigenvectors.
@ A is a diagonal matrix.
» The diagonal entries \; are the corresponding eigenvalues.
Check that this is reasonable:

Aq; =
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Spectral Decomposition

@ Because A has a full set of orthonormal eigenvectors {q;},
we can use these as an orthonormal basis for R”.

@ A vector x can be written in an alternate coordinate system:
X=2Ziq1+ -+ Zpdp

e Converting between the two coordinate systems:
x=Q'x x = Qx

@ In the alternate coordinate system,
A acts by re-scaling the individual coordinates:

Ax =21Aq +---+2ZpAdap
= \MZ1q1 + -+ ApZpqgp
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PSD Matrices

Symmetric matrices represent quadratic forms, f(v) = v Av.
o If v Av > 0 for all v # 0, A is positive definite, denoted A > 0.
o If vIAv >0 for all v, A is positive semi-definite, denoted A > 0.
o If vIAv < 0 for all v # 0, A is negative definite, denoted A < 0.

If v Av can be positive or negative, A is indefinite.

A ——

positive definite non-strictly PSD
/7 ) A 2 // / N
- | o~ B
f - -~
. \— Y e
negative definite indefinite
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PSD Matrices

e Exercise: Non-negative linear combinations of PSD matrices are
PSD.

o Related: If A is a random matrix which is always PSD, then
E[A] is PSD.
o Exercise: For any matrix B, the matrix BB is PSD.

e Corollary: For a random vector x, the covariance matrix
Cov(x) = E[(x — p)(x — p) "] is a PSD matrix. (Special case of
above, since x — p is a column vector, i.e. a D x 1 matrix.)
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PSD Matrices

Claim: A is positive definite (PSD) if and only if
all of its eigenvalues are positive (non-negative).

Proof: Write v in terms of the eigenbases,
v=Q'v.
Then, we have

viAv=v'QAQ'v

= v AV

This is positive (nonnegative) for all v if and only if
all the \; are positive (nonnegative).
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PSD Matrices

o If A is positive definite, then the contours of the quadratic form
are elliptical.

e If A is both diagonal and positive definite (i.e. its diagonal entries
are positive), then the ellipses are axis-aligned.

0.5 0
A= (V)

f(v)=v'Av

= E aivf

i
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PSD Matrices

For a positive definite A = QAQT, the contours of the quadratic form

are elliptical, and the principal axes of the ellipses are aligned with the
eigenvectors.

f(v)=vIQAQ'v

=vI AV
=> At}

In this example, A\ > As.

All symmetric matrices are diagonal if you choose the right coordinate
system.
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Matrix Powers

By the Spectral Decomposition, we can square a symmetric A:

A’=(QAQ")’=QA QTQ AQ" = QA’QT
:I

We can take the k-th power of A:
AF = QAFQT.
If A is invertible, we calculate its inverse:
1) 'AlQ !l =QAlQ.
If A is PSD, then we can calculate its square root:

A1/2 — QA1/2QT.
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Determinant Properties

Claim: The determinant of a symmetric matrix equals
the product of its eigenvalues.

Al =1QAQT|=1QlIAlIQT| = |A| = H)\z

Corollary: The determinant of a PSD (positive definite) matrix is
non-negative (positive).

Basic properties of a determinant:

[BC| = [B]-|C|

e |B| =0 iff B is singular

o |B7!| = |B|7! if B is invertible (nonsingular)
° [BT| =B
e If Q is orthogonal, then |Q| = £1

(i.e. orthogonal transformations preserve volume)
If A is diagonal with entries {\;}, then |A| =[], A;.
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© Multivariate Gaussian Distribution
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Univariate Gaussian distribution

N (a3 p,0%) = \/2%0 exp <_(a:2;5)2>

o Parameterized by mean y and variance o2.

e Why is Gaussian so popular?
» Sums of lots of independent random variables are approximately
Gaussian (Central Limit Theorem).
» Machine learning uses Gaussians a lot because they make the
calculations easy.
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Multivariate Mean and Covariance

Mean
M1
p=Ex]=|:
Hd
Covariance
o} o012 - oD
2
012 05 02D
2 = Cov(x) = E[(x —p)(x —p) '] =
op1 Op2 ‘- U%

(p and X)) uniquely define a multivariate Gaussian (or Normal)
distribution, denoted N (u, X) or N (x; u, X).

Intro ML (UofT) CSC311-Lec8 18 /54



PDF of Gaussian Distribution

PDF of the univariate Gaussian distribution (d = 1, ¥ = ¢2):

N (x5 p,0%) = \/2170 exp <_(x2_05)2>

PDF of the multivariate Gaussian distribution:

N(x;p,X) = (277W1|2|1/2 exp {—;(X - )= (x - M)]

AN, -
A7
AN

00
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Univariate Shift + Scale

o All univariate Gaussian distributions are shaped like
the standard normal distribution.

e Obtain N(p,0?) by starting with A(0, 1), shifting by u, and
stretching by o = Va2,

1.0 ‘ ‘

L §=0, 0?=02,— |

U=0, 0?=1.0,— 1

08 u=0, 02=50,— |

r p=-2, 0°=0.5,—— -
0.6

0.2

0.0
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Multivariate Shift + Scale

e Any multivariate Gaussian distribution is a shifted and “scaled”
version of the standard multivariate normal distribution.
» The standard multivariate normal has g =0 and £ =1

e Multivariate analog of the shift is simple: it’s a vector u
e But what about the scale?
» In the univariate case, the scale factor was the square root of the
variance: o = Vo2
» But in the multivariate case, the covariance X is a matrix!
Does X2 exist, and can we scale by it?
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Multivariate Shift + Scale

Start with a standard Gaussian x ~ N (0,I). So E[x] = 0 and
Cov(x) =L
e What happens if we apply the map x = Sx + b?

By linearity of expecation,

E[x] = SE[x] + b = b.
o By the linear transformation rule for covariance,
Cov(x) = SCov(x)S" =SS".

@ X is also Gaussian distributed.
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Multivariate Shift + Scale

E[Sx+b]=b
Cov(Sx +b) =SS".

e To obtain N'(u,X), we start with N'(0, 1),
shift by u, and scale by the matrix square root »1/2,
» Recall: £'/2 = QAY?Q.
» For each eigenvector q; with eigenvalue \;, we stretch by a factor of
Vv in the direction q;.
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Bivariate Gaussian

Probability Density
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Figure: Probability density function

©

B T VIR Y
B L W

Intro ML (UofT)

5 -6 Bl 2 [ 2 4 3

Figure: Contour plot of the pdf

CSC311-Lec8

24 /54



Bivariate Gaussian
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Bivariate Gaussian
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Figure: Contour plot of the pdf
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@ Gaussian Maximum Likelihood
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Maximum Likelihood for Multivariate Gaussian

Model the distribution of highest and lowest temperatures in Toronto
in March, and recorded the following observations

(-2.5-7.5) (-9.9-14.9) (-12.1-17.5) (-8.9,-13.9) (-6.0-11.1)

Assume they’re drawn from a Gaussian distribution N (u, X).
We want to estimate p and ¥ using data.
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Maximum Likelihood for Univariate Gaussian

8’u g i=1
1 N
i =y o
i=
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Maximum Likelihood for Univariate Gaussian

(‘?ﬁ:;a Zz]::—;log%r—loga—;( (i)—ﬂ)2
Lo L@ - py?
x® — )2 =0
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Maximum Likelihood for Multivariate Gaussian

Log-likelihood function:

¢ e T 1 L) ) Ts1 (50
(Haz)—IOg[Il {WWGXP{—Q(X —p) B (x _H)H

1 1 .
_(x@® )T 1@
ot g o { 30" S0 -0

— log(2m)2 — log |12 — L(x) — p)T51(x0 — p)
— 2

constant
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Gaussian Maximum Likelihood
Maximize the log-likelihood by setting the derivative to zero:
- _ < () Ts—1(5 (1) _
= b))
Z W 2 — )= (%Y — )

=— Z > D —p) =0 using identity Vyx' Ax = 2Ax

Solving for u, we get

LS00
=g o
N &

The best estimate for p is the sample mean of the observed values,
or the empirical mean.
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Maximum Likelihood for Multivariate Gaussians

We can do a similar calculation for the covariance matrix X.

ot

oy "
1N

S 1 @) _ gyx® — )T

by N;(X 1) (x' — )
_l _ TN\T _ T
=y X -1p) (X-1p)

where 1 is an IN-dimensional vector of 1s.

The best estimate for X is the empirical covariance.
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@ Revisiting Linear Regression
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Recap: Linear Regression

o Given a training set of inputs and targets {(x(®, (")) N,
e Linear model:

Squared error loss:

Lo regularization:
A

R(w) = 5

lwl”

@ Closed-form solution:
w=(X"X+A)"1X"t
o Gradient descent update rule:

w (1 —aN)w—aX ' (y —t)
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Linear Regression as Maximum Likelihood

o Let’s give linear regression a probabilistic interpretation.

o Assume a Gaussian noise model.

tlx ~N(w'x, o?)

o Linear regression is just maximum likelihood under this model:

—Zlogp D | xD; w, b) Zlog./\/ ‘w'x, 02)

N () — wlx)2
:1zlog[raexp< <t2>>]

N
1 .
= const — N2 ;:1 (t%) —wx)?
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Regularization as MAP Inference

@ View an Lo regularizer as MAP inference with a Gaussian prior.
@ Recall MAP inference:

arg max log p(w | D) = arg max [log p(w) + log p(D | w)]

@ We just derived the likelihood term log p(D | w):
;X
— (@) T o2
logp(D|w) = ~INa? ;Zl(t —w x)° + const

@ Assume a Gaussian prior, w ~ A (m, S):

log p(w) = log V'(w; m, S)

=log {W exp (f%(w —m) SN (w— m))]

= —Lw-— m) 'S~ (w — m) + const

@ Commonly, m =0 and S = nI, so

1
log p(w) = ——||w]|® + const.
2n
This is just Lo regularization!
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@ Gaussian Discriminant Analysis
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Generative vs Discriminative (Recap)

Two approaches to classification:

e Discriminative approach: estimate parameters of decision
boundary/class separator directly from labeled examples.
» Model p(t|x) directly (logistic regression models)

» Learn mappings from inputs to classes (linear/logistic regression,
decision trees etc)

» Tries to solve: How do I separate the classes?

e Generative approach: model the distribution of inputs
characteristic of the class (Bayes classifier).

» Model p(x|t)
» Apply Bayes Rule to derive p(t|x).

» Tries to solve: What does each class ”look” like?
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Classification: Diabetes Example

@ Gaussian discriminant analysis (GDA) is a Bayes classifier for
continuous-valued inputs.

@ Observation per patient: White blood cell count & glucose value.

@ p(x |t = k) for each class is shaped like an ellipse
— we model each class as a multivariate Gaussian
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Gaussian Discriminant Analysis

@ Gaussian Discriminant Analysis in its general form assumes that p(x|t) is
distributed according to a multivariate Gaussian distribution

@ Multivariate Gaussian distribution:

1

1 _
W exp [—5(x — /J‘k)TEk Hx = )

p(x|t = k) = :

where |Xj| denotes the determinant of the matrix.
@ Each class k£ has associated mean vector p;, and covariance matrix 3
@ How many parameters?

» Each p; has D parameters, for DK total.
» Each X has O(D?) parameters, for O(D?K) — could be hard to
estimate (more on that later).
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GDA: Learning

@ Learn the parameters for each class using maximum likelihood
@ For simplicity, assume binary classification
p(t]|¢) = ¢'(1— o)~

@ You can compute the ML estimates in closed form (¢ and p,, are easy,
3y is tricky)

1 (0
¢ = N;rl

N i i
_ =i i) x®

die1 Th

N
1 ( i i
o= o oo 0 =) 0 = )T
D=1 T il
r? = 1[0 =k
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GDA Decision Boundary

@ Recall: for Bayes classifiers, we compute the decision boundary with
Bayes’ Rule:
p(t)p(x|t
it ) = PRI
> p(') p(x| ')
@ Plug in the Gaussian p(x|t):

logp(tx|x) = logp(x|tx) + logp(tr) —logp(x)

D 1 1 _
5 log(2m) — 5 log 1 Zx] — g(x — ) TS (x = ) F
+ log p(t) — log p(x)
@ Decision boundary:
(x = pg) " (x = ) = (= ) "2 (x = ) + Const

@ What’s the shape of the boundary?

» We have a quadratic function in x, so the decision boundary is a
conic section!
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GDA Decision Boundary

AN
llllll[ XX3
il

o
OO
f"f‘:‘?":“;‘

discriminant:
P(t;|x)=0.5

posterior fort, O
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GDA Decision Boundary

e Our equation for the decision boundary:
(x = ) T2 (x = ) = (x = 1) "2 (x — ) + Const
e Expand the product and factor out constants (w.r.t. x):
TE x—2u b x—xTE x—2u£§] 'x + Const

e What if all classes share the same covariance X7
» We get a linear decision boundary!

—2u >lx = —2u > !'x + Const
(g, — py) "X 'x = Const
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GDA Decision Boundary: Shared Covariances

variances may be
O different

Intro ML (UofT) CSC311-Lec8 46 / 54



GDA vs Logistic Regression

@ Binary classification: If you examine p(t = 1|x) under GDA and assume
3 = X = X, you will find that it looks like this:

1
1 +exp(—wTx —b)

p(t | X, ¢7/'l’0a M1, E)

where (w, b) are chosen based on (¢, pg, pq, ).

@ Same model as logistic regression!
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GDA vs Logistic Regression

When should we prefer GDA to logistic regression, and vice versa?

@ GDA makes a stronger modeling assumption: assumes class-conditional
data is multivariate Gaussian

» If this is true, GDA is asymptotically efficient (best model in limit
of large N)
» If it’s not true, the quality of the predictions might suffer.

@ Many class-conditional distributions lead to logistic classifier.

» When these distributions are non-Gaussian (i.e., almost always), LR
usually beats GDA

@ GDA can handle easily missing features (how do you do that with LR?)
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Gaussian Naive Bayes

@ What if x is high-dimensional?

» The ¥; have O(D?K) parameters, which can be a problem if D is
large.

» We already saw we can save some a factor of K by using a shared
covariance for the classes.

» Any other idea you can think of?

@ Naive Bayes: Assumes features independent given the class

D

p(x|t=k) =[] nl;[t=k)

Jj=1

@ Assuming likelihoods are Gaussian, how many parameters required for
Naive Bayes classifier?

» This is equivalent to assuming the x; are uncorrelated, i.e. 3 is
diagonal.
» Hence, only D parameters for X!
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Gaussian Nailve Bayes

@ Gaussian Naive Bayes classifier assumes that the likelihoods are
Gaussian:
1 —(zj — pjn)?
exp (x; ZHJk)
V210, 205,

(this is just a 1-dim Gaussian, one for each input dimension)

pzj |t =k) =

@ Model the same as GDA with diagonal covariance matrix

@ Maximum likelihood estimate of parameters

N () (i
P Zizﬂ";(c)xg-)
J - N i
Dim1 rl(c)
N (@ i
o2 — D1 rl(c) ($§) - :ujk>2
" Ziil Tlgl)
r® = 10 =k
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Decision Boundary: Isotropic

@ We can go even further and assume the covariances are spherical, or
isotropic.

@ In this case: ¥ = oI (just need one parameter!)

@ Going back to the class posterior for GDA:
logp(tr|x) = logp(x|tr)+ logp(tr) — log p(x)
D 1 _ 1 _
= 5 log(2m) — 5 log S — 5 0x— ) TS x— ) +
+log p(tx) —log p(x)

@ Suppose for simplicity that p(t) is uniform. Plugging in ¥ = ¢I and
simplifying a bit,

tog p(t ) g plts | 3) =~ [(x — )T (x = ) — (= ) (x — o)
1 2 2
Tl gl Il — ]

20
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Decision Boundary: Isotropic

@ The decision boundary bisects the class means!
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Example

Full Covariances (acc 0.805) Shared Covariance (acc 0.717)

Naive Bayes (acc 0.780) Logistic regression (acc 0.722)
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Generative models - Recap

e GDA has quadratic (conic) decision boundary.

With shared covariance, GDA is similar to logistic regression.

o Generative models:
» Flexible models, easy to add/remove class.

» Handle missing data naturally.

» More “natural” way to think about things, but usually doesn’t work
as well.

e Tries to solve a hard problem (model p(x)) in order to solve a easy
problem (model p(t|x)).

Next up: Unsupervised learning with PCA!
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