CSC 311: Introduction to Machine Learning
Lecture 6 - Neural Nets 11

Sayyed Nezhadi

University of Toronto, Summer 2023

Intro ML (UofT) CSC311-Lec6 1/54

Outline

@ Back-Propagation

© Convolutional Networks

Intro ML (UofT) CSC311-Lec6 2 /54

@ Back-Propagation

Intro ML (Uof’ CSC311-Lec6 3 /54

Learning Weights in a Neural Network

e Goal is to learn weights in a multi-layer neural network
using gradient descent.

o Weight space for a multi-layer neural net: one set of weights for
each unit in every layer of the network

@ Define a loss £ and compute the gradient of the cost dJ/dw,
the average loss over all the training examples.

e Let’s look at how we can calculate dL/dw.

Intro ML (UofT) CSC311-Lec6 4 /54

Example: Two-Layer Neural Network

Figure: Two-Layer Neural Network

Intro ML (UofT) CSC311-Lec6 5/54

Computations for Two-Layer Neural Network

A neural network computes a composition of functions.

N B O B
h1 = 0'(2’1)
252) = w(()21) -1+ w§) -hy + wgl) ho

Intro ML (UofT) CSC311-Lec6 6 /54

Simplified Example: Logistic Least Squares

Intro ML (UofT) CSC311-Lec6 7 /54

Computation Graph

@ The nodes represent the inputs and computed quantities.

@ The edges represent which nodes are computed directly
as a function of which other nodes.

z t

T .

b3z >y [

w

Intro ML (UofT) CSC311-Lec6 8 /54

Uni-variate Chain Rule

Let z = f(y) and y = g(z) be uni-variate functions.
Then z = f(g(x)).

dz dz %

a_dfy dz

Intro ML (UofT) CSC311-Lec6 9/54

Logistic Least Squares: Gradient for w

Computing the gradient for w:

oL 9L dy

ow dy dw
0L Oy 0=
" Oy 0z Ow
=(y—t)d(z)x

= (o(wx +b) — t)o’ (wx + b)x

Computing the loss:

z=wx+b
y=o0(z2)
_1 2

L=5y—1)

Intro ML (UofT) CSC311-Lec6 10 /54

Logistic Least Squares: Gradient for b

Computing the gradient for b:

oL
ab

Computing the loss:

z=wx+b
y=o0(2)

1 2
L=5—1)

Intro ML (UofT) CSC311-Lec6 11 /54

Logistic Least Squares: Gradient for b

Computing the gradient for b:

oL 0L oy

b dy Ib
0L Oy 0=
" Oy 9z db

— (1) ()1
= (o(wz +b) — t)o' (wx + b)1

Computing the loss:

z=wx+b

y=o0(z)
1 2

E—z(y t)

Intro ML (UofT) CSC311-Lec6 12 /54

Comparing Gradient Computations for w and b

Computing the gradient for w: Computing the gradient for b:

oL oL

ow b

0L Oy 0z 0L Oy 0=

T 9y 9z dw " dy 9z db
=(y—t)o'(2) x =(y—1)o'(2)1

Computing the loss:

z=wx+b
y=o0(2)

1 2
L’—i(y—t)

Intro ML (UofT) CSC311-Lec6 13 /54

Structured Way of Computing Gradients

Computing the gradients:

oL
Fy_(y_t)
oL oL

oL dLdz dLC oL dcdz dcC

ow dzdw dz ¥ b dzdb dz

Computing the loss:

z=wr+b

y=o(2)
1

L= i(y—t)Q

Intro ML (UofT) CSC311-Lec6

14 /54

Error Signal Notation

e Let § denote the derivative d£/dy, called the error signal.

o Error signals are just values our program is computing
(rather than a mathematical operation).

Computing the loss: Computing the derivatives:
z=wr+b y=(y—t
y=o0(z) z=70(2
1 w=zr b=z
L= (y—1)°

2

Intro ML (UofT) CSC311-Lec6 15 /54

Computation Graph has a Fan-Out > 1

Lo-Regularized Regression
z=wxr+b

L t (2)
Y=oz
b>§z_>y—>£—>£reg L= %(y - t)Q

/L(_// »R/ R = %wg

Lrog = L+ AR

CSC311-Lec6 16 / 54

Intro ML (UofT)

Computation Graph has a Fan-Out > 1

Softmax Regression

w11 W1
b, \
t zg:ng-:U-—i—bg
x]_ >Z >y1 K] I
e
X 24>Z2—>y2 / k Zz ezt
/ T t2 L:—Ztklogyk
b k
Wa1
22

Intro ML (UofT) CSC311-Lec6 17 /54

Multi-variate Chain Rule

Suppose we have functions f(x,y), z(t), and y(t).

d
a0 = 5o oy @

of dr 0f dy t< \
/'

Example:
x(t) = cost dt — drdt ' 9y dt
y(t) = +2 = (ye™) - (—sint) + (1 + ze™¥) - 2t

Intro ML (UofT) CSC311-Lec6 18 /54

Multi-variate Chain Rule

In the context of back-propagation:

Mathematical expressions
to be evaluated

df _ofdz fd
a o df—i_@y dg *t
N/ /

Values already computed
by our program

In our notation:

H~\
2&

de
dt Yy

Intro ML (UofT)

CSC311-Lec6 19 /54

Full Backpropagation Algorithm:

Let v1,...,vn be a topological ordering of the computation graph
(i.e. parents come before children.)

vy denotes the variable for which we're trying to compute gradients.
o forward pass:

For:=1,...,N,
Compute v; as a function of Parents(v;).
e backward pass:

Fort=N-1,...,1,
v
vi = Z ﬁjavj.
(2

j€Children(v;)

Intro ML (UofT)

CSC311-Lec6 20 /54

Backpropagation for Regularized Logistic Least Squares

X t

b

Z_’y_’ﬁ_’ﬁrog »Creg =1

u/ N R/ R-Tus dLyeg
Forward pass: dr
= Lreg A
z=wxr+b Y dLyeg
y=o(z) Lreg dc
L= §(y —t) T %
1 Yy=5~4
R _ *’11)2 B Yy
2 =L(y—1)
Lreg =L+ AR

Intro ML (UofT) CSC311-Lec6

Backward pass:

0z —dR
R
ow * dw

21 /54

Backpropagation for Two-Layer Neural Network

Wit @ Backward pass:

=1
](U//T {(»)//"T t2 Yk = £ (yk B tk)
02 €) by :

() war u

A
\

uth U w;(j) =k hi
. @2
Forward pass: b;ﬁ) _ T
h; = ykw(.
Z; = Zj:wg)m] + bgl) ¢ Ek: ki
hi = o(z) Zi = hio'(z)
2 2
ye = wihi + b7 w;;)zzwj
1 (1) _
L=3 g(yk —tx)? b =7

Intro ML (UofT) CSC311-Lec6 22 /54

Backpropagation for Two-Layer Neural Network

In vectorized form:

w® w2

\ Backward pass:
X—7Z—h—yY—L L=1
y=L(y-t)
b b® W® =yh'
Forward pass: 5@ — -
z=WUx +p® h=wO?Ty
h =o(z) Z="hoo/(z)
y = W@h 4+ b® WO — 2T
L=yl b — 7

Intro ML (UofT) CSC311-Lec6

23 /54

Computational Cost

e Computational cost of forward pass:
one add-multiply operation per weight

Z; —Zwmx]—i—b R

e Computational cost of backward pass:
two add-multiply operations per weight

@ One backward pass is as expensive as two forward passes.

e For a multilayer perceptron, this means the cost is linear in the
number of layers, quadratic in the number of units per layer.

Intro ML (UofT) CSC311-Lec6 24 /54

Backpropagation

o The algorithm for efficiently computing gradients in neural nets.
o Gradient descent with gradients computed via backprop is used to
train the overwhelming majority of neural nets today.

e Even optimization algorithms much fancier than gradient descent
(e.g. second-order methods) use backprop to compute the
gradients.

o Despite its practical success, backprop is believed to be neurally
implausible.

Intro ML (UofT) CSC311-Lec6 25 /54

Auto-Differentiation

@ Suppose we construct our networks out of a series of “primitive”
operations (e.g., add, multiply) with specified routines for
computing derivatives.

o Autodifferentiation performs backprop in a completely mechanical
and automatic way.

e Many autodiff libraries: PyTorch, Tensorflow, Jax, etc.

e Although autodiff automates the backward pass for you, it’s still
important to know how things work under the hood.

e In CSC413, learn more about how autodiff works and use an
autodiff framework to build complex neural networks.

Intro ML (UofT) CSC311-Lec6 26 / 54

© Convolutional Networks

Intro ML (i CSC311-Lec6 27 /54

What makes vision hard?

@ Vision needs to be robust to a lot of transformations or
distortions:
» change in pose/viewpoint
» change in illumination
» deformation
» occlusion (some objects are hidden behind others)

e Many object categories can vary wildly in appearance (e.g. chairs)

o Geoff Hinton: “Imaging a medical database in which the age of the
patient sometimes hops to the input dimension which normally
codes for weight!”

Intro ML (UofT) CSC311-Lec6 28 /54

Overview

Suppose we want to train a network that takes a 200 x 200 RGB
image as input.

| 1000 hidden units |

A~

densely connected

200
200

| 3

What is the problem with having this as the first layer?

e Too many parameters! Input size = 200 x 200 x 3 = 120K.
Parameters = 120K x 1000 = 120 million.

e What happens if the object in the image shifts a little?

Intro ML (UofT)

CSC311-Lec6 29 /54

Overview

The same sorts of features that are useful in analyzing one part of the
image will probably be useful for analyzing other parts as well.

E.g., edges, corners, contours, object parts

We want a neural net architecture that lets us learn a set of feature
detectors that are applied at all image locations.

Intro ML (UofT) CSC311-Lec6 30 /54

Convolution Layers

Fully connected layers:

Each hidden unit looks at the entire image.

Intro ML (UofT) CSC311-Lec6 31/54

Convolution Layers

Locally connected layers:

Each column of hidden units looks at a small region of the image.

Intro ML (UofT) CSC311-Lec6 32 /54

Convolution Layers

Convolution layers:

Each column of hidden units looks at a small region of the image, and
the weights are shared between all image locations.

Intro ML (UofT) CSC311-Lec6 33 /54

Going Deeply Convolutional

Convolution layers can be stacked:

Intro ML (UofT) CSC311-Lec6 34 /54

1-D Convolution

We have two signals/arrays x and w.
e x is an input signal (e.g. a waveform or an image).
e w is a set of k weights (also referred to as a kernel or filter).
o Often zero pad x to an infinite array

The ¢-th value in the convolution is defined below.

k—1

(@ xw)[t] =) aft — 7]w[r].

7=0

Intro ML (UofT) CSC311-Lec6 35 /54

Convolution Method 1: Translate-And-Scale

2
11
2 X HI
4
2 2 2
1 11 11 2 2
1

Intro ML (UofT) CSC311-Lec6 36 /54

Convolution Method 2: Flip-And-Filter

[
|||||||

1
|||||||

Intro ML (UofT)

CSC311-Lec6 37 /54

Properties of Convolution

o Commutativity
axb=bxa

o Linearity

ax (AMb+ Aac) = Maxb+ daax*c

Intro ML (UofT) CSC311-Lec6

38 /54

2-D Convolution

2-D convolution is defined analogously to 1-D convolution.

If x and w are two 2-D arrays, then:

(x*xw)[i, j|] = ZZx[i—s,j—t] xwls, t].

Intro ML (UofT) CSC311-Lec6

39 /54

2-D Convolution: Translate-and-Scale

131
0|-1|1
1><22-1
1131 1 2
8|1 112 -1 0-2(-4]1
101 —= =
>I<01 +2>< 2|1 2|64 |-8
2 -1
0|-2|-2|1
1131
+—1 x <15
2 -1

Intro ML (UofT) CSC311-Lec6 40 / 54

2-D Convolution: Flip-and-Filter

131 T2
0-111] 5k
- 0 |-1
221

10
1131 X5y 115172
0-1]1 O ~2r-4
21211 2|64 |-3

o2 -2 |1

Intro ML (UofT) CSC311-Lec6 41 /54

Example 1: What does this convolution kernel do?

0|1]0
>l< 114
0|10

Intro ML (UofT) CSC311-Lec6 42 / 54

Example 2: What does this convolution kernel do?

o|-1]0
sk |-1]8]-1
0[-1]0

Intro ML (UofT) CSC311-Lec6 43 / 54

Example 3: What does this convolution kernel do?

0| -1
%k 2|02
1]0]-1

Intro ML (UofT) CSC311-Lec6 44 / 54

Convolution Layer in Convolutional Networks

e Two types of layers: convolution layers (or detection layer), and
pooling layers.

@ The convolution layer has a set of filters and
produces a set of feature maps.

o Each feature map is a result of convolving the image with a filter.

Example first-layer filters

(Zeiler and Fergus, 2013, Visualizing and

convolution understanding convolutional networks)

Intro ML (UofT) CSC311-Lec6 45 / 54

Non-linearity in Convolutional Networks

Common to apply a linear rectification nonlinearity:
y; = max(z;,0).
Why might we do this?

Convolution is a linear operation. Therefore, we need a nonlinearity,
otherwise 2 convolution layers would be no more powerful than 1.

convolution linear
rectification

convolution laver
Intro ML (UofT) CSC311-Lec6 46 / 54

Pooling Layers

These layers reduce the size of the representation and
build in in-variance to small transformations.

Most commonly, we use max-pooling,
which computes the maximum value of the units in a pooling group:

Y= max j
j in pooling group

Intro ML (UofT) CSC311-Lec6 47 / 54

Convolutional networks

convolution linear max convolution
rectification pooling
convolution layer pooling layer

Intro ML (UofT) CSC311-Lec6 48 / 54

Convolutional Network Structure

Because of pooling, higher-layer filters can cover a larger region of the input
than equal-sized filters in the lower layers.

convolution linear max convolution
rectification pooling
convolution layer pooling layer

Intro ML (UofT) CSC311-Lec6 49 / 54

Equivariance and Invariance

The network’s responses should be robust to translations of the input.
But this can mean two different things.

e Convolution layers are equivariant: if you translate the inputs, the
outputs are translated by the same amount.

e Want the network’s predictions to be invariant:
if you translate the inputs, the prediction should not change.
Pooling layers provide invariance to small translations.

Intro ML (UofT) CSC311-Lec6

50 / 54

Convolution Layers

Each layer consists of several feature maps, or channels each of which is
an array.

o If the input layer represents a grayscale image, it consists of one
channel. If it represents a color image, it consists of three channels.

Each unit is connected to each unit within its receptive field in the
previous layer. This includes all of the previous layer’s feature maps.

Intro ML (UofT) CSC311-Lec6 51 /54

LeNet

The LeNet architecture applied to
handwritten digit recognition on MNIST in 1998:

C3:f. maps 16@10x10
C1: feature maps . S4: {. maps 16@5x5

INPUT
20x32 ‘ 6@28x28

! | Full conﬁection Gaussian
Convolutions Subsampling Convolutions ~ Subsampling Full connection

Intro ML (i CSC311-Lec6 52 /54

AlexNet

AlexNet, like LeNet but scaled up in every way
(more layers, more units, more connections, etc.):

204 2048 \dense

192

dense dense|

1000

192 128 Max
Max 128 Max pooling
pooling pooling

204 2048

(Krizhevsky et al., 2012)

AlexNet’s stunning performance on the ImageNet competition is what
got everyone excited about deep learning in 2012.

Intro ML (Uo CSC311-Lec6 53 /54

ImageNet Results Over the Years

There are 1000 classes. Top-5 errors mean that the network can make
5 guesses for each image. So chance is 0.5%.

Year Model Top-5 error
2010 Hand-designed descriptors + SVM 28.2%
2011 Compressed Fisher Vectors + SVM 25.8%
2012 AlexNet 16.4%
2013 a variant of AlexNet 11.7%
2014 GoogLeNet 6.6%
2015 deep residual nets 4.5%

Human-level performance is around 5.1%.

No longer running the object recognition competition
because the performance is already so good.

Intro ML (UofT) CSC311-Lec6 54 /54

	Back-Propagation
	Convolutional Networks

