
CSC311 Summer 2023 Homework 3

Homework 3

Deadline: Monday, July 24, 2023, 11:59PM ET.

Submission: You will need to submit three files:

• Your answers to all of the questions, as a PDF file titled hw3_writeup.pdf. You can produce
the file however you like (e.g. LATEX, Microsoft Word, scanner), as long as it is readable. If
you need to split your writeup into multiple files, that’s OK, as long as we can figure out
what you did. You are expected to use vectorized notation when applicable.

• The completed Python files naive_bayes.py and q4.py.

Neatness Point: One point will be given for neatness. You will receive this point as long as we
don’t have a hard time reading your solutions or understanding the structure of your code.

Late Submission: Everyone will receive 3 grace days for the course, which can be used at any
point during the semester on the three assignments. No credit will be given for assignments sub-
mitted after 3 days.

Homeworks are individual work. See the Course Information handout1 for detailed policies.

1https://www.teach.cs.toronto.edu/~csc311h/summer/
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1. [5pts] Backprop

In this question, you will derive the backprop updates for a particular neural net architecture.
The network is similar to the multilayer perceptron architecture from lecture, and has one
linear hidden layer. However, there are two architectural differences:

• In addition to the usual vector-valued input x, there is a vector-valued “context” input
η. (The particular meaning of η isn’t important for your derivation, but think of it as
containing additional task information, such as whether to focus on the left or the right
half of the image.) The hidden layer activations are modulated based on η; this means
they are multiplied by a value which depends on η.

• The network has a skip connection which sends information directly from the input to
the output of the network.

The loss function is the binary cross-entropy loss. The forward pass equations and network ar-
chitecture are as follows. The symbol ⊙ represents elementwise multiplication, and σ denotes

the logistic/sigmoid function (σ(x) =
1

1 + e−x
).

z = Wx

s = Uη

h = z⊙ s

y = σ(v⊤h+ r⊤x)

L = t log y + (1− t) log(1− y)

The model parameters are matrices W and U, and vectors v and r. Note that there is only
one output unit, i.e. y and t are scalars.

(a) [1pt] Draw the computation graph relating x, z, η, s, h, L, and the model parameters.

(b) [1pt] Recall that σ(x) is the logistic function. Show that

dσ(x)

dx
= σ(x)(1− σ(x)).

(c) [3pts] Derive the backprop formulas to compute the error signals for all of the model
parameters, as well as x and η (recall from lecture that these are the derivatives of
the cost function with respect to the variables in question). Also include the backprop
formulas for all intermediate quantities needed as part of the computation.
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2. [13pts] Fitting a Näıve Bayes Model

In this question, we’ll fit a Näıve Bayes model to the MNIST digits using maximum likeli-
hood. In addition to the mathematical derivations, you will complete the implementation in
naive_bayes.py.

The starter code will download the dataset and parse it for you: Each training sample
(t(i),x(i)) is composed of a vectorized binary image x(i) ∈ {0, 1}784, and 1-of-10 encoded

class label t(i). i.e. t
(i)
c = 1 means image i belongs to class c.

Given parameters π and θ, Näıve Bayes defines the joint probability of each data point x
and its class label c as follows:

p(x, c |θ,π) = p(c |θ,π)p(x | c,θ,π) = p(c |π)
784∏
j=1

p(xj | c, θjc).

where p(c |π) = πc and p(xj = 1 | c,θ) = θjc. Here, θ is a matrix of probabilities for each
pixel and each class, so its dimensions are 784 × 10, and π is a vector with one entry for
each class. (Note that in the lecture, we simplified notation and didn’t write the probabilities
conditioned on the parameters, i.e. p(c|π) is written as p(c) in lecture slides).

For binary data (xj ∈ {0, 1}), we can write the Bernoulli likelihood as

p(xj | c, θjc) = θ
xj

jc (1− θjc)
(1−xj), (1)

which is just a way of expressing p(xj = 1|c, θjc) = θjc and p(xj = 0|c, θjc) = 1 − θjc in a
compact form.

For the prior p(t |π), we use a categorical distribution (generalization of Bernoulli distribution
to multi-class case),

p(tc = 1 |π) = p(c |π) = πc or equivalently p(t |π) = Π9
j=0π

tj
j where

9∑
i=0

πi = 1,

where p(c |π) and p(t |π) can be used interchangeably. You will fit the parameters θ and π
using MLE and MAP techniques. In both cases, your fitting procedure can be written as a
few simple matrix multiplication operations. For this question, you should write down three
significant digits for numerical answers.

(a) [3pts] First, derive the maximum likelihood estimator (MLE) for the class-conditional
pixel probabilities θ and the prior π. Derivations should be rigorous.

Hint 1: We saw in lecture that MLE can be thought of as ‘ratio of counts’ for the data,
so what should θ̂jc be counting?

Hint 2: Similar to the binary case, when calculating the MLE for πj for j = 0, 1, ..., 8,

write p(t(i) |π) = Π9
j=0π

t
(i)
j

j and in the log-likelihood replace π9 = 1− Σ8
j=0πj , and then

take derivatives w.r.t. πj . This will give you the ratio π̂j/π̂9 for j = 0, 1, .., 8. You know
that π̂j ’s sum up to 1.

(b) [2pts] Derive the log-likelihood log p(t|x,θ,π) for a single training image.

(c) [1pt] Fit the parameters θ and π using the training set with MLE, and try to report
the average log-likelihood per data point 1

NΣN
i=1 log p(t

(i)|x(i), θ̂, π̂), using Equation (1).
What goes wrong? (it’s okay if you can’t compute the average log-likelihood here).
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(d) [1pt] Plot the MLE estimator θ̂ as 10 separate greyscale images, one for each class.

(e) [3pts] Derive the Maximum A posteriori Probability (MAP) estimator for the class-
conditional pixel probabilities θ, using a Beta(α, β) prior on each θjc. Evaluate the
estimator for α = 3, β = 3; how does it compare to the MLE estimator?

(f) [1pt] Fit the parameters θ and π using the training set with MAP estimators from the
previous part, and report both the average log-likelihood per data point, 1

NΣN
i=1 log p(t

(i)|x(i), θ̂, π̂),
and the accuracy on both the training and test set. The accuracy is defined as the frac-
tion of examples where the true class is correctly predicted using ĉ = argmaxc log p(tc=
1|x, θ̂, π̂).

(g) [1pt] Plot the MAP estimator θ̂ as 10 separate greyscale images, one for each class.

(h) [1pt] List one advantage of the Näıve Bayes approach and one reason why it may not
be reasonable for this problem.
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3. [4pts] Logistic Regression with Gaussian Prior.

Consider a binary classification problem where the output y ∈ {0, 1} and the input x ∈ Rp.
We model the probability of y = 1 given x using logistic regression:

p(y = 1|x,θ) = 1

1 + exp(−xTθ)

where θ ∈ Rp is the parameter vector.

(a)[2pts]Maximum Likelihood Estimation (MLE).Given a datasetD = {(x(i), y(i))}Ni=1,
write down the expression for the log-likelihood of the parameter vector θ for logistic regres-
sion. How would you optimize the resulting log-likelihood?

(b)[2pts] Maximum A Posteriori (MAP) Estimation with Gaussian Prior. Now
consider a Gaussian prior on the parameter vector θ with zero mean and covariance matrix
σ2I:

p(θ) ∼ N (0, σ2I)

Derive the MAP log-likelihood of the parameter vector θ for logistic regression with the
Gaussian prior.
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4. [0pts] Gaussian Discriminant Analysis. For this question you will build classifiers to
label images of handwritten digits. Each image is 8 by 8 pixels and is represented as a vector
of dimension 64 by listing all the pixel values in raster scan order. The images are grayscale
and the pixel values are between 0 and 1. The labels y are 0, 1, 2, . . . , 9 corresponding to
which character was written in the image. There are 700 training cases and 400 test cases for
each digit; they can be found in the data directory in the starter code.

A skeleton (q4.py) is is provided for each question that you should use to structure your code.
Starter code to help you load the data is provided (data.py). Note: the get digits by label

function in data.py returns the subset of digits that belong to a given class.

Using maximum likelihood, fit a set of 10 class-conditional Gaussians with a separate, full
covariance matrix for each class. Remember that the conditional multivariate Gaussian prob-
ability density is given by,

p(x | y = k,µk,Σk) = (2π)−d/2|Σk|−1/2 exp

{
−1

2
(x− µk)

TΣk
−1(x− µk)

}
(2)

You should take p(y = k) =
1

10
. You will compute parameters µkj and Σk for k ∈ (0...9), j ∈

(1...64). You should implement the covariance computation yourself (i.e. without the aid
of np.cov). For this question, you should write down three significant digits for numerical
answers. Hint: To ensure numerical stability you may have to add a small multiple of the
identity to each covariance matrix. For this assignment you should add 0.01I to each matrix.

(a) [0pts] Using the parameters you fit on the training set and Bayes rule, compute the
average conditional log-likelihood, i.e. 1

N

∑N
i=1 log(p(y

(i) |x(i), θ)) on both the train and
test set and report it. Hint: for numerical stability, you will want to use np.logaddexp,
as discussed in Lecture 4.

(b) [0pt] Select the most likely posterior class for each training and test data point as your
prediction, and report your accuracy on the train and test set.

(c) [0pt] Redo 4.a and 4.b by assuming that the covariance matrix is diagonal. Compare
your answers and provide qualitative explanations.

The performance is worse compared with full-covariance matrix (lower likelihood and
accuracy). Diagonal covariance matrix cannot model dependence between pixels.
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