
2016-10-29

1

Temporal Difference
Learning

Rick Valenzano and Sheila McIlraith

Acknowledgements

• Based on textbook by Sutton and Barto

• Also used slides from Adam White

Outline

• TD updates insteads of MC or DP

• TD prediction

• Sarsa on-policy control

• Q-learning off-policy control

State-Value Updates

• Recall the update template

NewEstimate =
LastEstimate + StepSize ⋅ (Target – LastEstimate)

• Target is what we want
• Or an estimate (i.e. sample) of what we want

• Taking a step toward that target

2016-10-29

2

Policy Evaluation

• Consider the prediction problem
• Specifically, trying to compute ݒగ(ݏ)

Policy Evaluation

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

Policy Evaluation

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

 = Eగ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀ

| ܵ௧ = ݏ

Policy Evaluation

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

 = Eగ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀ

| ܵ௧ = ݏ

 = Eగ ܴ௧ାଵ + ߛ ⋅ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀଵ

| ܵ௧ = ݏ

2016-10-29

3

Policy Evaluation

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

 = Eగ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀ

| ܵ௧ = ݏ

 = Eగ ܴ௧ାଵ + ߛ ⋅ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀଵ

| ܵ௧ = ݏ

 = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Policy Evaluation

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

 = Eగ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀ

| ܵ௧ = ݏ

 = Eగ ܴ௧ାଵ + ߛ ⋅ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀଵ

| ܵ௧ = ݏ

 = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Monte Carlo State Update

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

Leads to the following update rule:

ܸ ݏ = ܸ ݏ + ߙ ⋅ (Eగ ௧ܩ ܵ௧ = ݏ − ((ݏ)ܸ

where ߙ is a constant step size

Monte Carlo State Update

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

Leads to the following update rule:

ܸ ݏ = ܸ ݏ +
1

(ݏ)ܰ
⋅ ௧ܩ) − ((ݏ)ܸ

௧ܩ is being used as an estimate of Eగ ௧ܩ ܵ௧ = ݏ

2016-10-29

4

Policy Evaluation

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

 = Eగ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀ

| ܵ௧ = ݏ

 = Eగ ܴ௧ାଵ + ߛ ⋅ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀଵ

| ܵ௧ = ݏ

 = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Policy Evaluation

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

 = Eగ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀ

| ܵ௧ = ݏ

 = Eగ ܴ௧ାଵ + ߛ ⋅ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀଵ

| ܵ௧ = ݏ

 = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Dynamic Programming Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule

ܸ ݏ = ܸ ݏ +
ߙ ⋅ (Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ − ((ݏ)ܸ

Dynamic Programming Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule

ܸ ݏ = ܸ ݏ +
 (Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ − ((ݏ)ܸ

If ߙ = 1

2016-10-29

5

Dynamic Programming Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule

ܸ ݏ = ܸ ݏ +
 (Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ − ((ݏ)ܸ

If ߙ = 1

Dynamic Programming Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule

ܸ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

If ߙ = 1

Dynamic Programming Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule

ܸ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

 = ߨ ܽ ݏ ⋅ ,ᇱݏ ݎ ,ݏ ݎ](ܽ + ߛ ⋅ ܸ ᇱݏ]
௦ᇲ,

where ܸ(ݏᇱ) is an estimate of ݒగ(ݏᇱ)

Dynamic Programming Update

(ݏ)ܸ = ߨ ܽ ݏ ⋅ ,ᇱݏ ݎ ,ݏ ݎ](ܽ + ߛ ⋅ ܸ ᇱݏ]
௦ᇲ,

• Bootstrapping: not just learning from outcomes,
but on other value function estimates

• Explicitly uses knowledge of the reward function
and the transition probabilities

2016-10-29

6

Policy Evaluation

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

 = Eగ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀ

| ܵ௧ = ݏ

 = Eగ ܴ௧ାଵ + ߛ ⋅ ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀଵ

| ܵ௧ = ݏ

 = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Temporal Difference Evaluation

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

• Don’t have explicitly defined model

• But when we take an action, we get a reward ܴ௧ାଵ
and a new state ݏ′

TD Target: ܴ௧ାଵ + ߛ ⋅ (ᇱݏ) ܸ
- Estimate of return we will get

TD(0) Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule

ܸ ݏ = ܸ ݏ + ߙ ⋅ (ܴ௧ାଵ + ߛ ⋅ ܸ ᇱݏ − ((ݏ)ܸ

Temporal Difference Update

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• Could wait until Saturday, then adjust how we
predict temperature in the Thursday state

• Like an MC update

2016-10-29

7

Temporal Difference Update

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• On Friday, can use our method to update the way
the prediction was made on Thursday

• Like a temporal difference update

Dynamic Programming Update

Monte Carlo Update TD(0) Update

2016-10-29

8

TD(0) Policy Evaluation TD(0) Policy Evaluation

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• On Friday, can use our method to update the way
the prediction was made on Thursday

• Like a temporal difference update

TD(0) vs Monte Carlo

• Both converge to ݒగ in the limit

• TD does bootstrapping, MC does not

• MC must wait until the end of episodes
• Episodes can be very long
• Can’t handle continuing domains

• TD updates occur after every action
• Can be used on continuing domains
• Can be implemented in an online fashion

TD(0) vs MC on RW Domain

• C is the start state
• Termination on either end

• Go left or right with equal probability

• గݒ = [
ଵ

,

ଶ

,

ଷ

,

ସ

,

ହ

]

2016-10-29

9

TD(0) vs MC on RW Domain TD(0) vs MC on RW Domain

TD Control

• Will once again do Generalized Policy Iteration

TD Q-Value Updates

• Will use TD(0) updates on Q-values
• Recall that we want estimates to help choose actions

ܳ ܵ௧, ௧ܣ ← ܳ ܵ௧, ௧ܣ +
ߙ ⋅ [ܴ௧ାଵ + ߛ ⋅ ܳ ܵ௧ାଵ, ௧ାଵܣ − ܳ ܵ௧, ௧ܣ]

2016-10-29

10

TD Q-Value Updates

• Will use TD(0) updates on Q-values
• Recall that we want estimates to help choose actions

ܳ ܵ௧, ௧ܣ ← ܳ ܵ௧, ௧ܣ +
ߙ ⋅ [ܴ௧ାଵ + ߛ ⋅ ܳ ܵ௧ାଵ, ௧ାଵܣ − ܳ ܵ௧, ௧ܣ]

• Where the name Sarsa comes from
• On-policy TD control algorithm

Sarsa On-Policy Control

Sarsa on Windy Gridworld

• 4-connected grid, but wind pushes the agent up
• Reward of -1 on every time step before goal is reached

Sarsa on Windy Gridworld

• Use ߳ = ߛ ,0.1 = ߙ,1 = 0.5, initial ܳ ,ݏ ܽ = 0

2016-10-29

11

Sarsa on Windy Gridworld

• Use ߳ = ߛ ,0.1 = ߙ,1 = 0.5, initial ܳ ,ݏ ܽ = 0

• MC would really struggle due to episode lengths

Sarsa Properties

• Sarsa converges to the best ߳-greedy policy

• Can also get it to converge to optimal policy
• Each state-action pair visited infinite number of times
• ߳ converges to 0 over time (i.e. ߳ = (ݐ/1

Off-Policy TD Learning

• Sarsa uses the action it will select for bootstrapping

ܳ ܵ௧, ௧ܣ ← ܳ ܵ௧, ௧ܣ +
ߙ ⋅ [ܴ௧ାଵ + ߛ ⋅ ܳ ܵ௧ାଵ, ௧ାଵܣ − ܳ ܵ௧, ௧ܣ]

This is the action that will be chosen by ߳-greedy
- It is not the action it “should” have chosen

Q-Learning Update

• Q-learning uses the following update

ܳ ܵ௧, ௧ܣ ← ܳ ܵ௧, ௧ܣ +
ߙ ⋅ [ܴ௧ାଵ + ߛ ⋅ max

 ܳ ܵ௧ାଵ, ܽ − ܳ ܵ௧, ௧ܣ]

This is the action that should have been chosen
- ߳-greedy may pick something else

2016-10-29

12

Q-Learning Update

• Q-learning uses the following update

ܳ ܵ௧, ௧ܣ ← ܳ ܵ௧, ௧ܣ +
ߙ ⋅ [ܴ௧ାଵ + ߛ ⋅ max

 ܳ ܵ௧ାଵ, ܽ − ܳ ܵ௧, ௧ܣ]

• Directly approximates ݍ∗, regardless of policy used
• Allows for proof of convergence to ݍ∗ if the followed

policy guarantees all state-action pairs are seen
• This is why it is off-policy

Q-Learning

Sarsa vs. Q-Learning

• Consider grid world, -1 per step, -1000 if fall off cliff
• 4-connected, deterministic actions

Sarsa vs. Q-Learning

• Both converge to “their optimal” policy
• So what is happening?

2016-10-29

13

Sarsa vs. Q-Learning

• Both converge to “their optimal” policy
• So what is happening? Sarsa takes ߳ into account

Summary

• TD update online based on one-step returns
• Can be used for episodic and continuing tasks

• TD prediction using TD updates
• Often faster than MC

• Sarsa on-policy control

• Q-learning off-policy control

