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Outline

• TD updates insteads of MC or DP

• TD prediction

• Sarsa on-policy control

• Q-learning off-policy control

State-Value Updates

• Recall the update template

NewEstimate = 
LastEstimate + StepSize ⋅ (Target – LastEstimate)

• Target is what we want 
• Or an estimate (i.e. sample) of what we want

• Taking a step toward that target
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Policy Evaluation

• Consider the prediction problem
• Specifically, trying to compute ݒగ(ݏ)

Policy Evaluation

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ
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Policy Evaluation
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Policy Evaluation

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

            = Eగ  ߛ ⋅ ܴ௧ାାଵ
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Monte Carlo State Update

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

Leads to the following update rule:

ܸ ݏ = ܸ ݏ + ߙ ⋅ (Eగ ௧ܩ ܵ௧ = ݏ  − ((ݏ)ܸ

where ߙ is a constant step size

Monte Carlo State Update

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

Leads to the following update rule:

ܸ ݏ = ܸ ݏ +
1

(ݏ)ܰ
⋅ ௧ܩ) − ((ݏ)ܸ

௧ܩ is being used as an estimate of Eగ ௧ܩ ܵ௧ = ݏ
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Policy Evaluation
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Dynamic Programming Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule
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ߙ             ⋅ (Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ − ((ݏ)ܸ

Dynamic Programming Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule

ܸ ݏ =                              ܸ ݏ +
            (Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ − ((ݏ)ܸ

If ߙ = 1
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Dynamic Programming Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule

ܸ ݏ =                              ܸ ݏ +
            (Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ − ((ݏ)ܸ

If ߙ = 1

Dynamic Programming Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule

ܸ ݏ =  Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

If ߙ = 1

Dynamic Programming Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule

ܸ ݏ =  Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

          =   ߨ ܽ ݏ ⋅   ,ᇱݏ ݎ ,ݏ ݎ](ܽ + ߛ ⋅ ܸ ᇱݏ ]
௦ᇲ,

where ܸ(ݏᇱ) is an estimate of ݒగ(ݏᇱ)

Dynamic Programming Update

(ݏ)ܸ =   ߨ ܽ ݏ ⋅   ,ᇱݏ ݎ ,ݏ ݎ](ܽ + ߛ ⋅ ܸ ᇱݏ ]
௦ᇲ,

• Bootstrapping: not just learning from outcomes,  
but on other value function estimates

• Explicitly uses knowledge of the reward function 
and the transition probabilities
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Policy Evaluation

గݒ ݏ = Eగ ௧ܩ ܵ௧ = ݏ

            = Eగ  ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀ

| ܵ௧ = ݏ

            = Eగ ܴ௧ାଵ + ߛ ⋅  ߛ ⋅ ܴ௧ାାଵ

ஶ

ୀଵ

| ܵ௧ = ݏ

            = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Temporal Difference Evaluation

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

• Don’t have explicitly defined model

• But when we take an action, we get a reward ܴ௧ାଵ
and a new state ݏ′

TD Target: ܴ௧ାଵ + ߛ ⋅ (ᇱݏ) ܸ
- Estimate of return we will get

TD(0) Update

గݒ ݏ = Eగ ܴ௧ାଵ + ߛ ⋅ గ(ܵ௧ାଵ)| ܵ௧ݒ = ݏ

Leads to the following update rule

ܸ ݏ = ܸ ݏ + ߙ ⋅ (ܴ௧ାଵ + ߛ ⋅ ܸ ᇱݏ − ((ݏ)ܸ

Temporal Difference Update

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• Could wait until Saturday, then adjust how we 
predict temperature in the Thursday state

• Like an MC update 
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Temporal Difference Update

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• On Friday, can use our method to update the way 
the prediction was made on Thursday

• Like a temporal difference update

Dynamic Programming Update

Monte Carlo Update TD(0) Update
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TD(0) Policy Evaluation TD(0) Policy Evaluation

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• On Friday, can use our method to update the way 
the prediction was made on Thursday

• Like a temporal difference update

TD(0) vs Monte Carlo

• Both converge to ݒగ in the limit

• TD does bootstrapping, MC does not

• MC must wait until the end of episodes
• Episodes can be very long
• Can’t handle continuing domains

• TD updates occur after every action
• Can be used on continuing domains
• Can be implemented in an online fashion

TD(0) vs MC on RW Domain

• C is the start state
• Termination on either end

• Go left or right with equal probability

• గݒ = [
ଵ


,

ଶ


,

ଷ


,

ସ


,

ହ


]
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TD(0) vs MC on RW Domain TD(0) vs MC on RW Domain

TD Control

• Will once again do Generalized Policy Iteration

TD Q-Value Updates

• Will use TD(0) updates on Q-values
• Recall that we want estimates to help choose actions

ܳ ܵ௧, ௧ܣ ← ܳ ܵ௧, ௧ܣ +
ߙ                  ⋅ [ܴ௧ାଵ + ߛ ⋅ ܳ ܵ௧ାଵ, ௧ାଵܣ − ܳ ܵ௧, ௧ܣ ]
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TD Q-Value Updates

• Will use TD(0) updates on Q-values
• Recall that we want estimates to help choose actions

ܳ ܵ௧, ௧ܣ ← ܳ ܵ௧, ௧ܣ +
ߙ                  ⋅ [ܴ௧ାଵ + ߛ ⋅ ܳ ܵ௧ାଵ, ௧ାଵܣ − ܳ ܵ௧, ௧ܣ ]

• Where the name Sarsa comes from
• On-policy TD control algorithm

Sarsa On-Policy Control

Sarsa on Windy Gridworld

• 4-connected grid, but wind pushes the agent up
• Reward of -1 on every time step before goal is reached

Sarsa on Windy Gridworld

• Use ߳ = ߛ ,0.1 = ߙ,1 = 0.5, initial ܳ ,ݏ ܽ = 0



2016-10-29

11

Sarsa on Windy Gridworld

• Use ߳ = ߛ ,0.1 = ߙ,1 = 0.5, initial ܳ ,ݏ ܽ = 0

• MC would really struggle due to episode lengths 

Sarsa Properties

• Sarsa converges to the best ߳-greedy policy

• Can also get it to converge to optimal policy
• Each state-action pair visited infinite number of times
• ߳ converges to 0 over time (i.e. ߳ = (ݐ/1

Off-Policy TD Learning

• Sarsa uses the action it will select for bootstrapping

ܳ ܵ௧, ௧ܣ ← ܳ ܵ௧, ௧ܣ +
ߙ                  ⋅ [ܴ௧ାଵ + ߛ ⋅ ܳ ܵ௧ାଵ, ௧ାଵܣ − ܳ ܵ௧, ௧ܣ ]

This is the action that will be chosen by ߳-greedy
- It is not the action it “should” have chosen 

Q-Learning Update

• Q-learning uses the following update

ܳ ܵ௧, ௧ܣ ← ܳ ܵ௧, ௧ܣ +
ߙ              ⋅ [ܴ௧ାଵ + ߛ ⋅ max


 ܳ ܵ௧ାଵ, ܽ − ܳ ܵ௧, ௧ܣ ]

This is the action that should have been chosen
- ߳-greedy may pick something else
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Q-Learning Update

• Q-learning uses the following update

ܳ ܵ௧, ௧ܣ ← ܳ ܵ௧, ௧ܣ +
ߙ              ⋅ [ܴ௧ାଵ + ߛ ⋅ max


 ܳ ܵ௧ାଵ, ܽ − ܳ ܵ௧, ௧ܣ ]

• Directly approximates ݍ∗, regardless of policy used
• Allows for proof of convergence to ݍ∗ if the followed 

policy guarantees all state-action pairs are seen
• This is why it is off-policy

Q-Learning

Sarsa vs. Q-Learning

• Consider grid world, -1 per step, -1000 if fall off cliff
• 4-connected, deterministic actions

Sarsa vs. Q-Learning

• Both converge to “their optimal” policy
• So what is happening?
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Sarsa vs. Q-Learning

• Both converge to “their optimal” policy
• So what is happening? Sarsa takes ߳ into account

Summary

• TD update online based on one-step returns
• Can be used for episodic and continuing tasks

• TD prediction using TD updates
• Often faster than MC

• Sarsa on-policy control

• Q-learning off-policy control


