Temporal Difference
Learning

Rick Valenzano and Sheila Mcllraith

Acknowledgements

* Based on textbook by Sutton and Barto

e Also used slides from Adam White

Outline

* TD updates insteads of MC or DP
* TD prediction
* Sarsa on-policy control

* Q-learning off-policy control

State-Value Updates

* Recall the update template

NewEstimate =

LastEstimate + StepSize - (Target — LastEstimate)

* Target is what we want
* Or an estimate (i.e. sample) of what we want

* Taking a step toward that target

Policy Evaluation

* Consider the prediction problem
* Specifically, trying to compute v, (s)

Policy Evaluation

U (s) = Ep|Ge[S: = 5]

Policy Evaluation

v.(s) = E.[G|S; = s]

= E; lzy ‘Reyiv1 | St = S]

Policy Evaluation

V. (s) = E;[G|S; = 5]
= E; Z)’i ‘Reyiv1 | St = S]
Li=0

= E; |Rt41 ‘H"ZVi ‘Reyiv1 | St = S]
| i=1

Policy Evaluation

V. (s) = E;[G|S; = 5]
= E; Z)’i ‘Reyiv1 | St = S]
Li=0

= E; |Rt41 ‘H"ZVi ‘Reyiv1 | St = S]
| i=1

= E;[Res1 +V - v (Ses)| St = 5]

Policy Evaluation

U (s) = Eg[Ge[Se = 5] b

= Eg Zl’i ‘Repiva | St = S]
Li=0

= E; |Rt41 ‘H"ZVi ‘Reyiv1 | St = S]
| i=1

= E;[Res1 +V - v (Ses)| St = 5]

Monte Carlo State Update
U (s) = Ex|G¢|S; = s]

Leads to the following update rule:

V(s) =V(s) +a- (Ex[GelSe = s| =V(s))

where « is a constant step size

Monte Carlo State Update
U (s) = Ex|G¢|S; = s]

Leads to the following update rule:

V(s) =V(s) + m (G —V(s))

G, is being used as an estimate of E_|G;|S; = s]

Policy Evaluation

V. (s) = E;[G|S; = 5]
= E; Z)’i ‘Reyiv1 | St = S]
Li=0

= E; |Rt41 ‘H"ZVi ‘Reyiv1 | St = S]
| i=1

= E;[Res1 +V - v (Ses)| St = 5]

Policy Evaluation
U (s) = Ex|G¢|S; = s]

= Eg Zl’i ‘Repiva | St = S]
Li=0

= E; |Rt41 ‘H"ZVi ‘Reyiv1 | St = S]
=1

= E[Rey1 +V - e (Se41)| Se = 5] _

Dynamic Programming Update
V() = Ex[Repq + vV - v (Seq1)| St = 5]

Leads to the following update rule

V(s) = V(s) +
a (Ex[Res1 +V - vr(Se41)| St = s| =V (s))

Dynamic Programming Update
U (8) = Ex|Rey1 +V - ¥ (Seq1)| St =]

Leads to the following update rule

V(s) = V(s) +
(Ex[Res1 + 7V - v (Ser1)| St = s] =V (s))

fa =1

Dynamic Programming Update
U (8) = Ex|Rey1 +V - ¥ (Seq1)| St =]

Leads to the following update rule

V(s) =) +
(Ex[Re41 + vV - v (Ser1)| St = s| — %))

fa =1

Dynamic Programming Update
Un($) = Ex[Res1 + v - v (Se41)| St = sl
Leads to the following update rule
V(s) = ExlRes1 + 7 vr(Se41)| St = sl

fa =1

Dynamic Programming Update
V() = Ex[Repq + vV - v (Seq1)| St = 5]

Leads to the following update rule

V(s) = En[Rt+1 + VU (Se41)| St = s]

= > n(als) |) p(s',rls, @)l +7 V("]

a

where V(s") is an estimate of v(s")

Dynamic Programming Update

a

V(s)=) m(als) |) p(s"rls @) +y - V(s")]

* Bootstrapping: not just learning from outcomes,
but on other value function estimates

* Explicitly uses knowledge of the reward function
and the transition probabilities

Policy Evaluation
U (s) = Ex|G¢|S; = s]

= Eg Zl’i ‘Repiva | St = S]
Li=0

= E; |Rt41 ‘H"ZVi ‘Reyiv1 | St = S]
=1

= E[Rey1 +V - e (Se41)| Se = 5] _

Temporal Difference Evaluation
Ur(S) = Ex|Rey1 +V - ¥ (Seq1)| St =]
* Don’t have explicitly defined model

* But when we take an action, we get a reward R, 4
and a new state s’

TD Target: R;y 1 +y -V (s')
- Estimate of return we will get

TD(0) Update
Ur(S) = Ex|Rey1 +V - ¥ (Seq1)| St =]
Leads to the following update rule

V(s) =V(s)+a-(Repr v -V(s') =V(s))

Temporal Difference Update

* Consider predicting the temperature on Saturday
* Have radar info, wind info, air pressure, ...
e Defines the state

* Prediction says 18 degrees

* Could wait until Saturday, then adjust how we
predict temperature in the Thursday state

* Like an MC update

Temporal Difference Update

* Consider predicting the temperature on Saturday
* Have radar info, wind info, air pressure, ...
e Defines the state

* Prediction says 18 degrees

* On Friday, can use our method to update the way
the prediction was made on Thursday

* Like a temporal difference update

Dynamic Programming Update

0 O D
Q0 Lg&g % L

/ VA A [/N

Monte Carlo Update

TD(0) Update

SEC

TD(0) Policy Evaluation

Input: the policy 7 to be evaluated
Initialize V' (s) arbitrarily (e.g., V(s) = 0,Vs € 8T)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
A < action given by 7w for S
Take action A, observe R, S’
V(S)« V(S)+alR+~V(S") - V(S)
S+ 5

until S is terminal

TD(0) Policy Evaluation

* Consider predicting the temperature on Saturday
* Have radar info, wind info, air pressure, ...
e Defines the state

* Prediction says 18 degrees

* On Friday, can use our method to update the way
the prediction was made on Thursday

* Like a temporal difference update

TD(0) vs Monte Carlo

* Both converge to v, in the limit
* TD does bootstrapping, MC does not

 MC must wait until the end of episodes
* Episodes can be very long
* Can’t handle continuing domains

* TD updates occur after every action
e Can be used on continuing domains
e Can be implemented in an online fashion

TD(0) vs MC on RW Domain
E<L®<L> 0 e 0 o 0 e 1

start

e Cis the start state
e Termination on either end

* Go left or right with equal probability

TD(0) vs MC on RW Domain
<L®<L 0 e 0 o 0 e 1 .

start
0.8 = Estimated
value 100
0.6 — A
0 s
1
0.4 -
true
values
0.2
0 | 1 1 | |
A B G D 3

TD(0) vs MC on RW Domain
<L®<L 0 e 0 o 0 e 1 .

start

0.25 = . -
Empirical RMS error, [L5 LS Wi s) — ve(9))?
01averaged over states 100 2~ 3

k i s=1

1 ! ! .
A\ \ o5 P
Y \ A
' ' — A\ \ 2, 3 A
l A N Yl Tl e

o=.1

0 I | I |
0 & S0 75 100

Walks / Episodes

TD Control

* Will once again do Generalized Policy Iteration

evaluation

m

T |4

starting v*
Vo o 7—>greedy(V)
improvement
[
e
[
Policy evaluation Estimate v, .
e.g. lterative policy evaluation .
Policy improvement Generate ' > 7 ”

e.g. Greedy policy improvement T

TD Q-Value Updates

* Will use TD(0) updates on Q-values

* Recall that we want estimates to help choose actions

Q(Se, Ar) « Q(S, Ap) +
a-[Rey1 V- QSe+1,4e+1) — Q(Se, Ap)]

TD Q-Value Updates

* Will use TD(0) updates on Q-values

* Recall that we want estimates to help choose actions

2t - I @@y - 065

e Where the name Sarsa comes from
* On-policy TD control algorithm

Sarsa On-Policy Control

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
QS, 4) « Q(S, A) + a[R+Q(S", 4) — Q(S, A)]
S+ S A+ A';
until S is terminal

Sarsa on Windy Gridworld

* 4-connected grid, but wind pushes the agent up
* Reward of -1 on every time step before goal is reached

O O O

1

1

1

2 2

1

+

Actions

Sarsa on Windy Gridworld

*Usee =0.1,y = 1,a = 0.5, initial Q(s,a) = 0

170 -

v
150 P
3 G <—I—>
100 4 Actions
Episodes 5o 0T T 123210
50
04

I | 1 | 1 | | 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps

Sarsa on Windy Gridworld

*Usee =0.1,y = 1,a = 0.5, initial Q(s,a) = 0

170 -

vd
150 - /
(3 (: +
100 - Actions
EpiSOdES 0O 0 0 1 1 1 l 2 2
50
0_

| I | 1 | 1 | | 1
0 1000 2000 3000 4000 5000 6000 7000 8000

Time steps

* MC would really struggle due to episode lengths

Sarsa Properties

e Sarsa converges to the best e-greedy policy

* Can also get it to converge to optimal policy
e Each state-action pair visited infinite number of times
* € converges to 0 over time (i.e. € = 1/t)

Off-Policy TD Learning

 Sarsa uses the action it will select for bootstrapping

Q(Se, Ap) « Q(S, Ap) +
a-[Rey1 V- Q(Se+1,Ac+1) — Q(Se, Ap)]

/

This is the action that will be chosen by e-greedy

- It is not the action it “should” have chosen

Q-Learning Update
* Q-learning uses the following update

Q(Se, Ap) « Q(S, Ap) +
a-|Reyrs+v- mC?X Q(Se+1,a) — Q(Se, Ap)]

N

This is the action that should have been chosen
- e-greedy may pick something else

Q-Learning Update
* Q-learning uses the following update

Q(Se, Ap) « Q(S, Ap) +
a-|Reyrs+v- mC?X Q(Se+1,a) — Q(Se, Ap)]

* Directly approximates g*, regardless of policy used

* Allows for proof of convergence to g™ if the followed
policy guarantees all state-action pairs are seen

* This is why it is off-policy

Q-Learning

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) « Q(S,A) + « [R + vy max, Q(S’,a) — Q(S, A)]
S+ 5

until S is terminal

Sarsa vs. Q-Learning

* Consider grid world, -1 per step, -1000 if fall off cliff

* 4-connected, deterministic actions

[— optimal path

&p)
_I
=
D
O
2%

Reward
per
epsiode

* Both converge to “their optima

Sarsa vs. Q-Learning

Sarsa

s0d MV TV ‘>a';,-,¢,lh %
Q-learning
75
-100 : . | | |
0 100 200 300 400 500
Episodes

|II

policy

* So what is happening?

Reward
per
epsiode

* Both converge to “their optima

Sarsa vs. Q-Learning

Sarsa

Q-learning
T
-100 T T T 1
0 200 300 400 500
Episodes

|II

policy

* So what is happening? Sarsa takes € into account

Summary

* TD update online based on one-step returns
e Can be used for episodic and continuing tasks

* TD prediction using TD updates
* Often faster than MC

 Sarsa on-policy control

* Q-learning off-policy control

