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Outline

• TD updates insteads of MC or DP

• TD prediction

• Sarsa on-policy control

• Q-learning off-policy control



State-Value Updates

• Recall the update template

NewEstimate = 
LastEstimate + StepSize (Target – LastEstimate)

• Target is what we want 
• Or an estimate (i.e. sample) of what we want

• Taking a step toward that target



Policy Evaluation

• Consider the prediction problem
• Specifically, trying to compute 



Policy Evaluation



Policy Evaluation



Policy Evaluation



Policy Evaluation



Policy Evaluation



Monte Carlo State Update

Leads to the following update rule:

where is a constant step size



Monte Carlo State Update

Leads to the following update rule:

is being used as an estimate of 
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Dynamic Programming Update

Leads to the following update rule
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Dynamic Programming Update

Leads to the following update rule

ᇲ

where is an estimate of 



Dynamic Programming Update

ᇲ

• Bootstrapping: not just learning from outcomes,  
but on other value function estimates

• Explicitly uses knowledge of the reward function 
and the transition probabilities



Policy Evaluation



Temporal Difference Evaluation

• Don’t have explicitly defined model

• But when we take an action, we get a reward 
and a new state 

TD Target: 
- Estimate of return we will get



TD(0) Update

Leads to the following update rule



Temporal Difference Update

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• Could wait until Saturday, then adjust how we 
predict temperature in the Thursday state

• Like an MC update 



Temporal Difference Update

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• On Friday, can use our method to update the way 
the prediction was made on Thursday

• Like a temporal difference update



Dynamic Programming Update



Monte Carlo Update



TD(0) Update



TD(0) Policy Evaluation



TD(0) Policy Evaluation

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• On Friday, can use our method to update the way 
the prediction was made on Thursday

• Like a temporal difference update



TD(0) vs Monte Carlo

• Both converge to in the limit

• TD does bootstrapping, MC does not

• MC must wait until the end of episodes
• Episodes can be very long
• Can’t handle continuing domains

• TD updates occur after every action
• Can be used on continuing domains
• Can be implemented in an online fashion



TD(0) vs MC on RW Domain

• C is the start state
• Termination on either end

• Go left or right with equal probability

•



TD(0) vs MC on RW Domain



TD(0) vs MC on RW Domain



TD Control

• Will once again do Generalized Policy Iteration



TD Q-Value Updates

• Will use TD(0) updates on Q-values
• Recall that we want estimates to help choose actions



TD Q-Value Updates

• Will use TD(0) updates on Q-values
• Recall that we want estimates to help choose actions

• Where the name Sarsa comes from
• On-policy TD control algorithm



Sarsa On-Policy Control



Sarsa on Windy Gridworld

• 4-connected grid, but wind pushes the agent up
• Reward of -1 on every time step before goal is reached



Sarsa on Windy Gridworld

• Use , , , initial 



Sarsa on Windy Gridworld

• Use , , , initial 

• MC would really struggle due to episode lengths 



Sarsa Properties

• Sarsa converges to the best -greedy policy

• Can also get it to converge to optimal policy
• Each state-action pair visited infinite number of times
• converges to 0 over time (i.e. )



Off-Policy TD Learning

• Sarsa uses the action it will select for bootstrapping

This is the action that will be chosen by -greedy
- It is not the action it “should” have chosen 



Q-Learning Update

• Q-learning uses the following update

This is the action that should have been chosen
- -greedy may pick something else



Q-Learning Update

• Q-learning uses the following update

• Directly approximates , regardless of policy used
• Allows for proof of convergence to if the followed 

policy guarantees all state-action pairs are seen
• This is why it is off-policy



Q-Learning



Sarsa vs. Q-Learning

• Consider grid world, -1 per step, -1000 if fall off cliff
• 4-connected, deterministic actions



Sarsa vs. Q-Learning

• Both converge to “their optimal” policy
• So what is happening?



Sarsa vs. Q-Learning

• Both converge to “their optimal” policy
• So what is happening? Sarsa takes into account



Summary

• TD update online based on one-step returns
• Can be used for episodic and continuing tasks

• TD prediction using TD updates
• Often faster than MC

• Sarsa on-policy control

• Q-learning off-policy control


