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Outline

* TD updates insteads of MC or DP
* TD prediction
* Sarsa on-policy control

* Q-learning off-policy control



State-Value Updates

* Recall the update template

NewEstimate =

LastEstimate + StepSize - (Target — LastEstimate)

* Target is what we want
* Or an estimate (i.e. sample) of what we want

* Taking a step toward that target



Policy Evaluation

* Consider the prediction problem
* Specifically, trying to compute v, (s)



Policy Evaluation

U (s) = Ep|Ge[S: = 5]
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Monte Carlo State Update
U (s) = Ex|G¢|S; = s]

Leads to the following update rule:

V(s) =V(s) +a- (Ex[GelSe = s| =V(s))

where « is a constant step size



Monte Carlo State Update
U (s) = Ex|G¢|S; = s]

Leads to the following update rule:

V(s) =V(s) + m (G —V(s))

G, is being used as an estimate of E_|G;|S; = s]
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Dynamic Programming Update
V() = Ex[Repq + vV - v (Seq1)| St = 5]

Leads to the following update rule

V(s) = V(s) +
a (Ex[Res1 +V - vr(Se41)| St = s| =V (s))



Dynamic Programming Update
U (8) = Ex|Rey1 +V - ¥ (Seq1)| St = ]

Leads to the following update rule

V(s) = V(s) +
(Ex[Res1 + 7V - v (Ser1)| St = s] =V (s))
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Dynamic Programming Update
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Leads to the following update rule
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Dynamic Programming Update
Un($) = Ex[Res1 + v - v (Se41)| St = sl
Leads to the following update rule
V(s) = ExlRes1 + 7 vr(Se41)| St = sl

fa =1



Dynamic Programming Update
V() = Ex[Repq + vV - v (Seq1)| St = 5]

Leads to the following update rule

V(s) = En[Rt+1 + VU (Se41)| St = s]

= > n(als) | ) p(s',rls, @)l +7 V("]

a

where V(s") is an estimate of v(s")




Dynamic Programming Update

a

V(s)= ) m(als) | ) p(s"rls @) +y - V(s")]

* Bootstrapping: not just learning from outcomes,
but on other value function estimates

* Explicitly uses knowledge of the reward function
and the transition probabilities




Policy Evaluation
U (s) = Ex|G¢|S; = s]

= Eg Zl’i ‘Repiva | St = S]
Li=0

= E; |Rt41 ‘H"ZVi ‘Reyiv1 | St = S]
=1

= E[Rey1 +V - e (Se41)| Se = 5] _




Temporal Difference Evaluation
Ur(S) = Ex|Rey1 +V - ¥ (Seq1)| St = ]
* Don’t have explicitly defined model

* But when we take an action, we get a reward R, 4
and a new state s’

TD Target: R;y 1 +y -V (s')
- Estimate of return we will get



TD(0) Update
Ur(S) = Ex|Rey1 +V - ¥ (Seq1)| St = ]
Leads to the following update rule

V(s) =V(s)+a-(Repr v -V(s') =V(s))



Temporal Difference Update

* Consider predicting the temperature on Saturday
* Have radar info, wind info, air pressure, ...
e Defines the state

* Prediction says 18 degrees

* Could wait until Saturday, then adjust how we
predict temperature in the Thursday state

* Like an MC update



Temporal Difference Update

* Consider predicting the temperature on Saturday
* Have radar info, wind info, air pressure, ...
e Defines the state

* Prediction says 18 degrees

* On Friday, can use our method to update the way
the prediction was made on Thursday

* Like a temporal difference update



Dynamic Programming Update
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Monte Carlo Update




TD(0) Update
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TD(0) Policy Evaluation

Input: the policy 7 to be evaluated
Initialize V' (s) arbitrarily (e.g., V(s) = 0,Vs € 8T)
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
A < action given by 7w for S
Take action A, observe R, S’
V(S)« V(S)+alR+~V(S") - V(S)
S+ 5

until S is terminal




TD(0) Policy Evaluation

* Consider predicting the temperature on Saturday
* Have radar info, wind info, air pressure, ...
e Defines the state

* Prediction says 18 degrees

* On Friday, can use our method to update the way
the prediction was made on Thursday

* Like a temporal difference update



TD(0) vs Monte Carlo

* Both converge to v, in the limit
* TD does bootstrapping, MC does not

 MC must wait until the end of episodes
* Episodes can be very long
* Can’t handle continuing domains

* TD updates occur after every action
e Can be used on continuing domains
e Can be implemented in an online fashion



TD(0) vs MC on RW Domain
E<L®<L> 0 e 0 o 0 e 1

start

e Cis the start state
e Termination on either end

* Go left or right with equal probability



TD(0) vs MC on RW Domain
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TD(0) vs MC on RW Domain
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TD Control

* Will once again do Generalized Policy Iteration

evaluation

m

T |4

starting v*
Vo o 7—>greedy(V)
improvement
[
e
[
Policy evaluation Estimate v, .
e.g. lterative policy evaluation .
Policy improvement Generate ' > 7 ”

e.g. Greedy policy improvement T



TD Q-Value Updates

* Will use TD(0) updates on Q-values

* Recall that we want estimates to help choose actions

Q(Se, Ar) « Q(S, Ap) +
a-[Rey1 V- QSe+1,4e+1) — Q(Se, Ap)]



TD Q-Value Updates

* Will use TD(0) updates on Q-values

* Recall that we want estimates to help choose actions
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e Where the name Sarsa comes from
* On-policy TD control algorithm



Sarsa On-Policy Control

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Choose A from S using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
QS, 4) « Q(S, A) + a[R+Q(S", 4) — Q(S, A)]
S+ S A+ A';
until S is terminal




Sarsa on Windy Gridworld

* 4-connected grid, but wind pushes the agent up
* Reward of -1 on every time step before goal is reached
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Sarsa on Windy Gridworld

*Usee =0.1,y = 1,a = 0.5, initial Q(s,a) = 0
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Sarsa on Windy Gridworld

*Usee =0.1,y = 1,a = 0.5, initial Q(s,a) = 0
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* MC would really struggle due to episode lengths



Sarsa Properties

e Sarsa converges to the best e-greedy policy

* Can also get it to converge to optimal policy
e Each state-action pair visited infinite number of times
* € converges to 0 over time (i.e. € = 1/t)



Off-Policy TD Learning

 Sarsa uses the action it will select for bootstrapping

Q(Se, Ap) « Q(S, Ap) +
a-[Rey1 V- Q(Se+1,Ac+1) — Q(Se, Ap)]

/

This is the action that will be chosen by e-greedy

- It is not the action it “should” have chosen



Q-Learning Update
* Q-learning uses the following update

Q(Se, Ap) « Q(S, Ap) +
a-|Reyrs+v- mC?X Q(Se+1,a) — Q(Se, Ap)]

N

This is the action that should have been chosen
- e-greedy may pick something else



Q-Learning Update
* Q-learning uses the following update

Q(Se, Ap) « Q(S, Ap) +
a-|Reyrs+v- mC?X Q(Se+1,a) — Q(Se, Ap)]

* Directly approximates g*, regardless of policy used

* Allows for proof of convergence to g™ if the followed
policy guarantees all state-action pairs are seen

* This is why it is off-policy



Q-Learning

Initialize Q(s,a),Vs € 8,a € A(s), arbitrarily, and Q(terminal-state,-) =0
Repeat (for each episode):
Initialize S
Repeat (for each step of episode):
Choose A from S using policy derived from @ (e.g., e-greedy)
Take action A, observe R, S’
Q(S,A) « Q(S,A) + « [R + vy max, Q(S’,a) — Q(S, A)]
S+ 5

until S is terminal




Sarsa vs. Q-Learning

* Consider grid world, -1 per step, -1000 if fall off cliff

* 4-connected, deterministic actions

[ — optimal path
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Reward
per
epsiode

* Both converge to “their optima

Sarsa vs. Q-Learning
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* So what is happening?
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* Both converge to “their optima

Sarsa vs. Q-Learning
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* So what is happening? Sarsa takes € into account



Summary

* TD update online based on one-step returns
e Can be used for episodic and continuing tasks

* TD prediction using TD updates
* Often faster than MC

 Sarsa on-policy control

* Q-learning off-policy control



