
Temporal Difference
Learning

Rick Valenzano and Sheila McIlraith

Acknowledgements

• Based on textbook by Sutton and Barto

• Also used slides from Adam White

Outline

• TD updates insteads of MC or DP

• TD prediction

• Sarsa on-policy control

• Q-learning off-policy control

State-Value Updates

• Recall the update template

NewEstimate =
LastEstimate + StepSize (Target – LastEstimate)

• Target is what we want
• Or an estimate (i.e. sample) of what we want

• Taking a step toward that target

Policy Evaluation

• Consider the prediction problem
• Specifically, trying to compute

Policy Evaluation

Policy Evaluation

Policy Evaluation

Policy Evaluation

Policy Evaluation

Monte Carlo State Update

Leads to the following update rule:

where is a constant step size

Monte Carlo State Update

Leads to the following update rule:

is being used as an estimate of

Policy Evaluation

Policy Evaluation

Dynamic Programming Update

Leads to the following update rule

Dynamic Programming Update

Leads to the following update rule

If

Dynamic Programming Update

Leads to the following update rule

If

Dynamic Programming Update

Leads to the following update rule

If

Dynamic Programming Update

Leads to the following update rule

ᇲ

where is an estimate of

Dynamic Programming Update

ᇲ

• Bootstrapping: not just learning from outcomes,
but on other value function estimates

• Explicitly uses knowledge of the reward function
and the transition probabilities

Policy Evaluation

Temporal Difference Evaluation

• Don’t have explicitly defined model

• But when we take an action, we get a reward
and a new state

TD Target:
- Estimate of return we will get

TD(0) Update

Leads to the following update rule

Temporal Difference Update

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• Could wait until Saturday, then adjust how we
predict temperature in the Thursday state

• Like an MC update

Temporal Difference Update

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• On Friday, can use our method to update the way
the prediction was made on Thursday

• Like a temporal difference update

Dynamic Programming Update

Monte Carlo Update

TD(0) Update

TD(0) Policy Evaluation

TD(0) Policy Evaluation

• Consider predicting the temperature on Saturday
• Have radar info, wind info, air pressure, …
• Defines the state

• Prediction says 18 degrees

• On Friday, can use our method to update the way
the prediction was made on Thursday

• Like a temporal difference update

TD(0) vs Monte Carlo

• Both converge to in the limit

• TD does bootstrapping, MC does not

• MC must wait until the end of episodes
• Episodes can be very long
• Can’t handle continuing domains

• TD updates occur after every action
• Can be used on continuing domains
• Can be implemented in an online fashion

TD(0) vs MC on RW Domain

• C is the start state
• Termination on either end

• Go left or right with equal probability

•

TD(0) vs MC on RW Domain

TD(0) vs MC on RW Domain

TD Control

• Will once again do Generalized Policy Iteration

TD Q-Value Updates

• Will use TD(0) updates on Q-values
• Recall that we want estimates to help choose actions

TD Q-Value Updates

• Will use TD(0) updates on Q-values
• Recall that we want estimates to help choose actions

• Where the name Sarsa comes from
• On-policy TD control algorithm

Sarsa On-Policy Control

Sarsa on Windy Gridworld

• 4-connected grid, but wind pushes the agent up
• Reward of -1 on every time step before goal is reached

Sarsa on Windy Gridworld

• Use , , , initial

Sarsa on Windy Gridworld

• Use , , , initial

• MC would really struggle due to episode lengths

Sarsa Properties

• Sarsa converges to the best -greedy policy

• Can also get it to converge to optimal policy
• Each state-action pair visited infinite number of times
• converges to 0 over time (i.e.)

Off-Policy TD Learning

• Sarsa uses the action it will select for bootstrapping

This is the action that will be chosen by -greedy
- It is not the action it “should” have chosen

Q-Learning Update

• Q-learning uses the following update

This is the action that should have been chosen
- -greedy may pick something else

Q-Learning Update

• Q-learning uses the following update

• Directly approximates , regardless of policy used
• Allows for proof of convergence to if the followed

policy guarantees all state-action pairs are seen
• This is why it is off-policy

Q-Learning

Sarsa vs. Q-Learning

• Consider grid world, -1 per step, -1000 if fall off cliff
• 4-connected, deterministic actions

Sarsa vs. Q-Learning

• Both converge to “their optimal” policy
• So what is happening?

Sarsa vs. Q-Learning

• Both converge to “their optimal” policy
• So what is happening? Sarsa takes into account

Summary

• TD update online based on one-step returns
• Can be used for episodic and continuing tasks

• TD prediction using TD updates
• Often faster than MC

• Sarsa on-policy control

• Q-learning off-policy control

