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Figure : Atari game examples.
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Figure : Sarsa(\) + Linear value function approximation.
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A Few Useful Things to Know about Machine Learning

Pedro Domingos
Department of Computer Science and Engineering
University of Washington
Seattle, WA 98195-2350, U.S.A.
pedrod@cs.washington.edu

The basic argument is remarkably simple [5]. Let’s say a
classifier is bad if its true error rate is greater than e. Then
the probability that a bad classifier is consistent with n ran-
dom, independent training examples is less than (1 —¢)™.
Let b be the number of bad classifiers in the learner’s hy-
pothesis space H. The probability that at least one of them
is consistent is less than b(1 — €)™, by the union bound
Assuming the learner always returns a consistent classifier,
the probability that this classifier is bad is then less than
|H|(1 — )", where we have used the fact that b < [H|. So
if we want this probability to be less than 4, it suffices to
make n > In(6/|H|)/In(1 = ¢) > * (In|H| +In 1).

Unfortunately, guarantees of this type have to be taken with
a large grain of salt. This is because the bounds obtained in
this way are usually extremely loose. The wonderful feature
of the bound above is that the required number of examples
only grows logarithmically with |H| and 1/8. Unfortunately,
most interesting hypothesis spaces are doubly exponential in
the number of features d, which still leaves us needing a num-
ber of examples exponential in d. For example, consider the
space of Boolean functions of d Boolean variables. If there
are e possible different examples, there are 2° possible dif-
ferent functions, so since there are 2¢ possible examples, the

capacity, they are quite uselul; indeed, the close mterplay
of theory and practice is one of the main reasons machine
learning has made so much progress over the years. But
caveat emptor: learning is a complex phenomenon, and just
because a learner has a theoretical justification and works in
practice doesn’t mean the former is the reason for the latter.

FEATURE ENGINEERING IS THE KEY

"At the end of the day, some machine learning projects suc-
ceed and some fail. What makes the difference? Easily
the most important factor is the features used. If you have
many independent features that each correlate well with the
class, learning is easy. On the other hand, if the class is
a very complex function of the features, you may not be
able to learn it. Often, the raw data is not in a form that is
amenable to learning, but you can construct features from it
that are. This is typically where most of the cffort in a ma-
chine learning project goes. It is often also one of the most
interesting parts, where intuition, creativity and “black art”
are as important as the technical stuff.

First-timers are often surprised by how little time in a ma-
chine learning project is spent actually doing machine learn-
ing. But it makes sense if you consider how time-consuming
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Context: Sarsa(\)

Basic BASS DISCO LSH RAM
Times Best 6 17 1 8 8

Table : Results Sarsa(\)

BASS: Basic Features + Pairwise combinations of them.
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Basic Features

op(c,r, k) = 1 iff color k is present within tile (¢, r).
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Context: Pairwise Combinations

Basic Features

op(c,r, k) = 1 iff color k is present within tile (¢, r).

Pairwise combinations

dp(c1,m1, k1, ca,m2, ko) = 1iff gy(cr, 71, k1) = dp(ca, 72, k) =1
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Basic features:
o (¢p(5,12,W) =1 and ¢p(4,10,Y) = 1) — Reward!




Basic features:
o (¢p(5,12,W) =1 and ¢p(4,10,Y) = 1) — Reward!

BASS:
° ¢p(5,12,W,4,10,Y) =1 — Reward!



Context: DQN

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih ~ Koray Kavukcuoglu  David Silver ~ Alex Graves Ioannis Antonoglou
Daan Wierstra ~ Martin Riedmiller
DeepMind Technologies

{vlad, koray,david, alex.graves, iocannis, daan, martin.riedmiller} @ deepmind.com

Figure : Deep Q-Learning.
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Where is the feature vector?
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Motivation

State of the Art Control of Atari Games
Using Shallow Reinforcement Learning

Yitao Liang', Marlos C. Machado*, Erik Talvitie', and Michael Bowling!
fFranklin & Marshall College tUniversity of Alberta
Lancaster, PA, USA Edmonton, AB, Canada
{yliang, erik.talvitie}@fandm.edu {machado, mbowling}@ualberta.ca

DQN’s comparison with Sarsa(\) was unfair.
e Sarsa(\) was trained with far less training data.
o DQN uses 4 frames as input.

e DQN has representational biases that Sarsa(\) doesn’t.
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Methodology:
o Identify representational biases in DQN.
@ Incorporate identified biases into feature vector.
e Evaluate Sarsa(\) using the new feature vector.

@ Repeat.
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Picture was taken and modified from Mnih et al. (2015)
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Basic Features

| ® Qt

pool size
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Picture was retrieved and modified from

http://ufldl.stanford.edu/tutorial /supervised /ConvolutionalNeuralNetwork/
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Basic Features
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Picture was retrieved and modified from

http://ufldl.stanford.edu/tutorial /supervised/ConvolutionalNeuralNetwork/



Blob-PR

Basic Features

Basic Features

op(e,r, k) = 1 iff color k is present within tile (¢, 7).
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Spatial Invariance
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Spatial Invariance
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Spatial Invariance

Pairwise combinations

op(cr,ri, ki, ca,m2, ko) = 1iff ¢p(cr,r1, k1) = dp(ca, 2, ko) =1

¢p(5,12,W,4,10,Y) = 1
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Spatial Invariance
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Picture was taken and modified from Mnih et al. (2015)
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Spatial Invariance

Pairwise combinations

op(cr,ri, ki, ca,m2, ko) = 1iff ¢p(cr,r1, k1) = dp(ca, 2, ko) =1

¢p(5,12,W,4,10,Y) = 1
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Idea: Use relative positions instead of absolute positions!.

!~ Take the max of BASS features over absolute position.



Blob-PROST

Spatial Invariance

Idea: Use relative positions instead of absolute positions!.

B-PROS (Basic Pairwise Relative Offsets in Space)

o ¢p(c,r k).
o ¢s(k1,ka,i,7) =1 iff exists ¢ and r such that ¢p(c,r, k1) =1
and ¢p(c+ 1,7+ j, ko) = 1.

!~ Take the max of BASS features over absolute position.
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BASS:
o ¢,(5,12,W,4,10,Y) = 1 — Reward!
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BASS:

° ¢p(5,12,1,4,10,Y) = 1 — Reward!
B-PROS:

° ¢s(—2,—1,W,Y) =1 — Reward!
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Spatial Invariance

[ | |
o [ RS [
L] .

BASS:

° ¢p(5,12,1,4,10,Y) = 1 — Reward!
B-PROS:

° ¢s(—2,—1,W,Y) =1 — Reward!
Results:

e B-PROS 41 vs 12 Basic, BASS, DISCO, LSH.
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Non-Markovian Features
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Non-Markovian Features

Idea: Compare basic features between the current screen and
the screen 5 frames in the past.
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Non-Markovian Features

Idea: Compare basic features between the current screen and
the screen 5 frames in the past.

B-PROST (... Time)

o ¢p(c,r k).

(
4 qbs(k kQ,Z j)
o ¢y (ki,ka,i,j) = 1 iff exists ¢ and r such that
t=5(c, 7, k1) = 1 and ¢l (c+ 1,7 + j, k2) = 1.
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Non-Markovian Features

B-PROS:
° ¢s(—2,—1,W,Y) =1— Reward... I guess...
B-PROST:
o (¢s(—2,—1,W)Y)=1and ¢+(2,2,Y,W) =1) — Reward!
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Non-Markovian Features

B-PROS:

° ¢s(—2,—1,W,Y) =1— Reward... I guess...
B-PROST:

o (¢s(—2,—1,W)Y)=1and ¢+(2,2,Y,W) =1) — Reward!
Results:

e B-PROST 40 vs 9 B-PROS.
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Object Detection
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Object Detection
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Blob-PROST

Object Detection

Idea: Approximate object detection by grouping contiguous
pixels of the same color (blobs).
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Object Detection

Idea: Approximate object detection by grouping contiguous
pixels of the same color (blobs).

Blob-PROST

e Compute blobs.

e Define ¢y(c,r, k) over blobs.
o ¢s(ky,ka,t,7).

o ¢i(k1,ko,i,7).
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Object Detection
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Object Detection




Blob-PROST

Object Detection

Results:
@ Blob-PROST 29 vs 20 B-PROS and B-PROST.



Comparison with DQN (methodology)

Comparing Blob-PROST and DQN:
@ Train for 200,000,000 frames.
@ Run 24 independent trials.
e Evaluate using 499 episodes (at the end of training).
e Start with a random number of no-op actions.

@ Use the minimal action set.



Comparison with DQN

Comparison with DQN (computational cost)

Blob-PROST DQN
50MB-3.7, 9GB
Memory (in most game, 1GB) 9.8GB
: 56-300
Runnl(rilg decisions/second (83 when o ing GPU)
Spee (in most games, 150) when usthg




Comparison with DQN

Comparison with DQN (performance)

They report results over 24 trials. DQN only reports 1 trial:
e Blob-PROST 20 vs 29 DQN (average)
@ Blob-PROST 21 vs 28 DQN (median)
@ Blob-PROST 32 vs 17 DQN (best trial)



Comparison with DQN

Comparison with DQN (performance)
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o Reward is sparse (e.g. Tennis).



Conclusion

Conclusions

@ Blob-PROST is a strong, light-weight, alternative to DQN
in ALE.
@ Blob-PROST is better than DQN when:
o It is fairly easy to die (e.g. Montezuma’s Revenge).
o Reward is sparse (e.g. Tennis).
@ DQN is better than Blob-PROST when:

e Object velocities are important (e.g. shooting games).
o Holistic information is important (e.g. Breakout, Space
Invaders).
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Conclusions

“We saw progressive and dramatic improvements by respectively
incorporating relative distances between objects, non-Markov
features, and more sophisticated object detection. This
illuminates some important representational issues that likely
underly DQN’s success. It also suggests that the general
properties of the representations learned by DQN may be more
important to its success in ALE than the specific features it
learns in each game.”
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Q1) Why is a single Atari screenshot inadequate, and how does
comparing between screenshots that are 5 frames apart help?
Explain these using Pong as an example.
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that it uses the best performing weights found at different
points during the training phase. Why is this problematic?
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Q2) One of the issues identified in the DQN experimentation is
that it uses the best performing weights found at different
points during the training phase. Why is this problematic?
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