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Heuristic Search Algorithms
and Markov Decision Processes

Rick Valenzano and Sheila McIlraith

Recap of Last Week

 Considered variants of sequential decision-making
– Deterministic vs Non-Deterministic vs Stochastic
– Fully Observable vs. Partially Observable
– Model-based vs Model-free
– Goal-seeking vs. Reward seeking

 Started with classical planning
– Fully observable, deterministic, implicitly defined 

transition system, defined start state and goal tests

 Heuristic search-based planning
– Looks at planning as graph search

Recap of Last Week

 Can use Dijkstra’s search
– Or incremental version, Uniform-Cost Search

 Uniform-cost search ignores the state information
– Not practical

 Heuristic functions encode state information
– Provides an estimate of the cost-to-go

– Encodes domain information or automatically generated

This Week

 Hill climbing techniques

 The A* Algorithm
– Completeness and optimality

 Greedy Best-First Search

 Weighted A*
– Bounded suboptimality

 Markov Decision Processes
– Stochastic state transitions
– Rewards vs goals
– Value Functions, Bellman equations
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Employing Heuristics

 Given a heuristic function ℎ
– What do we do with it?

Hill-Climbing

 Commit to the “best” child according to ℎ
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 What did we do now?
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Hill-Climbing

 Multiple options
– Pick “best of bad options”

– Pick randomly

– All kinds of local search strategies

Enforced Hill-Climbing
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Enforced Hill-Climbing
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Search Algorithm Properties

Optimality

An solution found by the search algorithm is 
guaranteed to be optimal.

Completeness

The algorithm is guaranteed to find a solution to a 
given problem if one exists.

Search Algorithm Properties

Optimality

An solution found by the search algorithm is 
guaranteed to be optimal.

– Hill-climbing is not optimal.

Completeness

The algorithm is guaranteed to find a solution to a 
given problem if one exists.

– Hill-climbing is not complete.
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Hill-Climbing

 So what is hill-climbing good for?

Uniform-Cost Search

Optimality

An solution found by the search algorithm is 
guaranteed to be optimal.

– Uniform-cost search is optimal

Completeness

The algorithm is guaranteed to find a solution to a 
given problem if one exists.

– Uniform-cost search is complete on finite state-spaces.

def UniformCostSearch(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

p ← argmin ௦ᇲ∈ை௉ாே ݃ ᇱݏ

if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

def UniformCostSearch(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

ܘ ← ܖܑܕ܏ܚ܉ ࢙ᇲ∈ࡺࡱࡼࡻ ࢍ ࢙ᇱ

if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists
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def UniformCostSearch(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

ܘ ← (ࡺࡱࡼࡻ)܍܌ܗۼܜ܋܍ܔ܍܁
if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

Open-Closed List Algorithms

 Open-Closed List (OCL) algorithms
– Generalizes uniform-cost search

– Allows for different ways of selecting nodes from OPEN

 Will use the heuristic function in SelectNode

Best-First Search

 Best-first search using an evaluation function

Φ ∶ nodes → ℝஹ଴

 Defines the “value” of a node
– Always selects the node with the lowest Φ-cost

def SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே  Φ ݊ᇱ

Best-First Search

 Best-first search using an evaluation function

Φ ∶ nodes → ℝஹ଴

def SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே  Φ ݊ᇱ

 Uniform-cost search uses Φ ݊ = ݃ ݊
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OCL Terminology
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∗ܥ is the optimal solution path to the problem
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OCL Algorithms

Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node ݊௜ from P in OPEN
with the optimal g-cost (ie. ݃ ݊ = ݃∗(݊)).
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OCL Algorithms
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Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node ݊௜ from P in OPEN
with the optimal g-cost (ie. ݃ ݊ = ݃∗(݊)).
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def OCL(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

p ← SelectNode(ܱܲܰܧ)
if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

def OCL(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

p ← SelectNode(ܱܲܰܧ)
if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

Node Reopening
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OCL Algorithms
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if ݌ is a goal, return path to ݌
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OCL Algorithms

Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given 
problem. Then at any time prior to the expansion of a 
goal node, there will be some node ݊௜ from P in OPEN
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OCL Algorithms

OCL Completeness

Any OCL algorithm is complete on any solvable 
problem with a finite state-space.

Proof Sketch

1. The candidate path lemma ensures that OPEN can 
never become empty before a goal state is expanded.

OCL Algorithms

OCL Completeness

Any OCL algorithm is complete on any solvable 
problem with a finite state-space.

Proof Sketch

1. The candidate path lemma ensures that OPEN can 
never become empty before a goal state is expanded.

2. There are a finite number of paths to any node, so 
every node can only be re-expanded a finite number of 
times.

The A* Algorithm

 Best-first search using an evaluation function

Φ ∶ nodes → ℝஹ଴

def SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே  Φ ݊ᇱ

 A* uses Φ ݊ = ݂ ݊ =  ݃ ݊ + ℎ(݊)



2016-09-29

14

The A* Algorithm

def SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே  g ݊ᇱ + ℎ(݊ᇱ)

1010 99

Start
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݂ A = ݃ A + ℎ A = 8 + 9 = 17

݂ A is an estimate of the cost of 
the solution path through A

A

Heuristic Admissibility

 A*’s optimality relies on admissibility
– Ensures the heuristic never overestimates the cost to go

– “One-sided error”

Heuristic Admissibility

Heuristic ℎ is admissible if ℎ ݊ ≤ ℎ∗(݊) for all ݊.

Optimality of A*

Optimality of A*

If the heuristic being used is admissible, then any 
solution found by A* will be optimal.

Optimality of A*

Optimality of A*

If the heuristic being used is admissible, then any 
solution found by A* will be optimal.

Proof Sketch.

By contradiction, show that a goal state along a 
suboptimal solution cannot be expanded before all the 
nodes along the optimal solution path.
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Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search

Uniform-cost search will only find optimal solutions.

Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search

Uniform-cost search will only find optimal solutions.

Proof Sketch

Uniform-cost search is equivalent to A* using the 
heuristic ℎ such that ℎ ݊ = 0 for all ݊.

Using the Heuristic to Prune

Avoiding Node Expansions

If the heuristic being used is admissible, then A* will 
not expand any nodes for which ݂ ݊ > .∗ܥ

Using the Heuristic to Prune

Avoiding Node Expansions
If the heuristic being used is admissible, then A* will 
not expand any nodes for which ݂ ݊ > .∗ܥ

Proof Sketch.
Before a goal is found, there will always be a node ݊′
from the optimal solution path on OPEN such that

݂ ݊′ = ݃ ݊′ + ℎ ݊′ = ݃∗ ݊′ + ℎ ݊′
                                           ≤ ݃∗ ݊ᇱ + ℎ∗ ݊ᇱ = ∗ܥ
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A* vs. Uniform-Cost Search

 Uniform-cost search will not expand any ݊ such that

݃ ݊ > ∗ܥ

 A* may be able to expand fewer unique states than 
unif0rm-cost search due to heuristic pruning

 But what about re-expansions?

def OCL(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

p ← SelectNode(ܱܲܰܧ)
if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

Node Reopening

Heuristic Consistency

Heuristic Consistency

Heuristic ℎ is consistent if for any pair of node ݌ and 
ܿ, where ܿ is a child of ݌, the following holds:

ℎ ݌ ≤ ℎ ܿ + ,݌)ߢ ܿ)

Heuristic Consistency

Heuristic Consistency

Heuristic ℎ is consistent if for any pair of node ݌ and 
ܿ, where ܿ is a child of ݌, the following holds:

ℎ ݌ ≤ ℎ ܿ + ,݌)ߢ ܿ)

10 9
1



2016-09-29

17

Heuristic Consistency

Heuristic Consistency

Heuristic ℎ is consistent if for any pair of node ݌ and 
ܿ, where ܿ is a child of ݌, the following holds:

ℎ ݌ ≤ ℎ ܿ + ,݌)ߢ ܿ)

10 8
1

Heuristic Consistency

 Consistency guarantees a heuristic version of the 
triangle inequality:

ℎ ݌ ≤ ℎ ݀ + ߢ ,݌ ܿ + ,ܿ)ߢ ݀)

1010 99
1

66
3

Heuristic Consistency

Re-expansion Theorem

If the heuristic being used by A* is consistent, then A* 
will never reopen a node.

Heuristic Consistency

Re-expansion Theorem

If the heuristic being used by A* is consistent, then A* 
will never reopen a node.

or alternatively

If the heuristic being used by A* is consistent, then 
whenever A* expands a node ݊, ݃ ݊ = ݃∗(݊)
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A* vs. Uniform-Cost Search

 A* will do at least as much pruning as UCS

 If the heuristic is consistent, no node will be 
expanded more than once

 If the heuristic allows some pruning, A* should be 
faster than UCS

The A* Algorithm

 Recall proof that A* is optimal

 Similar argument shows A* expands every node with 
݂ ݊ < ∗ܥ where ܥ∗ is the optimal solution cost
– This is how it proves that the optimal solution has been 

found

 Proving optimality of a found solution path can 
make A* prohibitively expensive

Weighted A* (WA*)

 Weighted A* is also a best-first search algorithm

def   SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே  Φ ݊ᇱ

 WA* uses Φ ݊ = ௪݂ ݊ = ݃ ݊ + ݓ ⋅ ℎ(݊)
– The weight ݓ is an parameter where ݓ ≥ 1

Weighted A* (WA*)

௪݂ ݊ = ݃ ݊ + ݓ ⋅ ℎ(݊)

 The weight impacts the relative importance of the 
ℎ-cost and the ݃-cost
– ℎ-cost dominates the evaluation for large ݓ
– WA* becomes greedier on ℎ as ݓ increases
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Weighted A* (WA*)

௪݂ ݊ = ݃ ݊ + ݓ ⋅ ℎ(݊)

ݓ = 2
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Weighted A* Properties

Optimality

Weighted A* is not an optimal algorithm.

Completeness

Weighted A* is a complete algorithm.

Weighted A* Suboptimality

Bounded Suboptimality

If the heuristic being used is admissible, then any 
solution found by WA* will cost no more than ݓ ⋅ .∗ܥ
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Weighted A* Suboptimality

Bounded Suboptimality

If the heuristic being used is admissible, then any 
solution found by WA* will cost no more than ݓ ⋅ .∗ܥ

Proof Sketch.

This is ensured by the ௪݂ and the way nodes are 
selected for expansion.

Greedy Best-First Search

 Greedy Best-First Search (GBFS) is WA* 
“in the limit”
– Still a best-first search, but maximally greedy on ℎ

def   SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே  Φ ݊ᇱ

 WA* uses Φ ݊ = ୋ݂୆୊ୗ ݊ = ℎ(݊)
– Ignores the heuristic completely

 Also called Pure Heuristic Search

Greedy Best-First Search

 GBFS is commonly used in domain-independent 
planners

 Usually faster than A* and low-weight WA*

 GBFS is complete but suboptimal
– No bound on suboptimality

Modern Optimal Search Research

 Low memory algorithms
– IDA*, RBFS, EPEA*, SMA*, …

 Better heuristics

 Pruning methods for transpositions
– Stubborn sets

 Bidirectional Search
– MM, SFBDS, …
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Suboptimal Search Research

 Non-uniform cost domains
– GBFS and WA* can struggle if action costs vary greatly

 Understanding impact of different decisions
– Re-expansions, tie-breaking, weight value

 Exploration in GBFS 
– ߳-greedy, Type-based exploration, novelty-based pruning

Summary

 Hill-climbing as a simple way to use a heuristic

 Generalized UCS to the OCL algorithm framework
– Showed how Best-First Search fits into this framework

 Introduced A* as an OCL algorithm
– Considered several properties

 Considered WA* and GBFS as suboptimal 
alternatives


