Heuristic Search Algorithms and Markov Decision Processes

Rick Valenzano and Sheila McIlraith

Recap of Last Week

- Can use **Dijkstra's search**
 - Or incremental version, Uniform-Cost Search
- Uniform-cost search ignores the state information
 - Not practical
- Heuristic functions encode state information
 - Provides an estimate of the cost-to-go
 - Encodes domain information or automatically generated

Recap of Last Week

- Considered variants of sequential decision-making
 - Deterministic vs Non-Deterministic vs Stochastic
 - Fully Observable vs. Partially Observable
 - Model-based vs Model-free
 - Goal-seeking vs. Reward seeking
- Started with classical planning
 - Fully observable, deterministic, implicitly defined transition system, defined start state and goal tests
- Heuristic search-based planning
 - Looks at planning as graph search

This Week

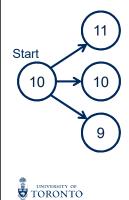
- Hill climbing techniques
- The A* Algorithm
 - Completeness and optimality
- Greedy Best-First Search
- Weighted A*
 - Bounded suboptimality
- Markov Decision Processes
 - Stochastic state transitions
 - Rewards vs goals
 - Value Functions, Bellman equations

Employing Heuristics

- Given a heuristic function *h*
 - What do we do with it?

Hill-Climbing

• Commit to the "best" child according to h



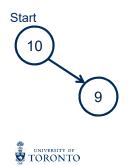
Hill-Climbing

• Commit to the "best" child according to *h*

Start 10

Hill-Climbing

• Commit to the "best" child according to *h*



Hill-Climbing

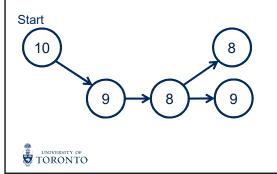
■ Commit to the "best" child according to *h*

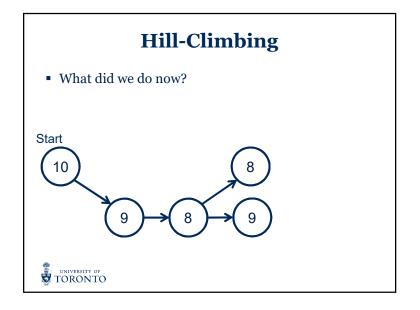
Start 10 10 10 10 10 10 10

Hill-Climbing • Commit to the "best" child according to h Start 10 9 8

Hill-Climbing

• Commit to the "best" child according to *h*



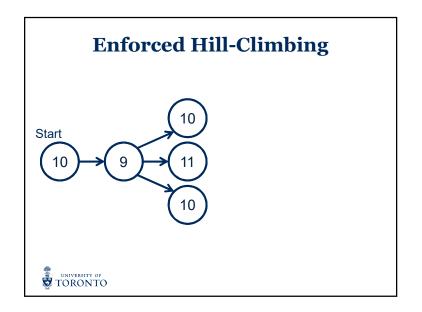


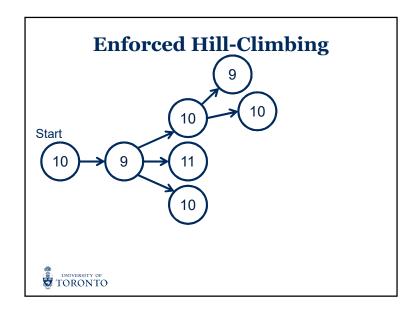
Hill-Climbing

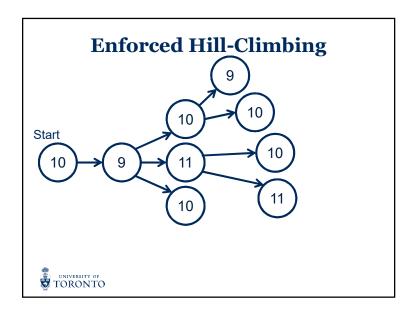
- Multiple options
 - Pick "best of bad options"
 - Pick randomly
 - All kinds of local search strategies

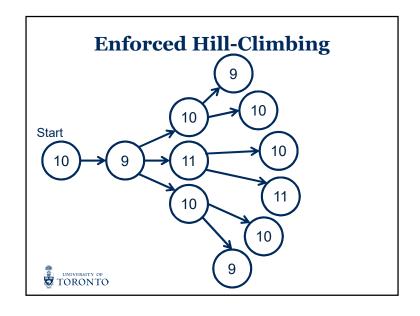
Enforced Hill-Climbing Start 10 9 10 UNIVERSITY OF TORONTO

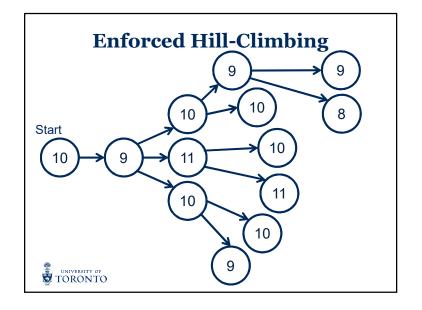
Start 10 9

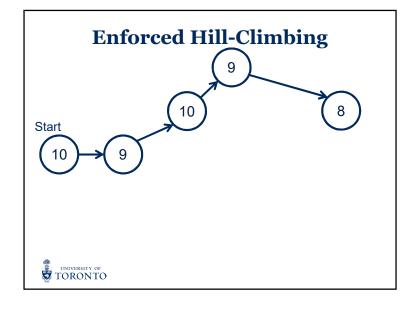


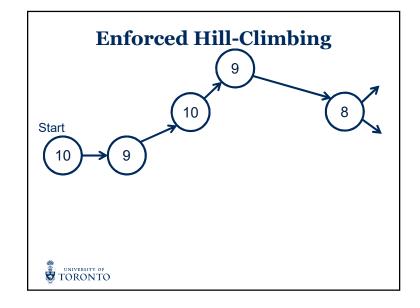












Search Algorithm Properties

Optimality

An solution found by the search algorithm is guaranteed to be optimal.

Completeness

The algorithm is guaranteed to find a solution to a given problem if one exists.

Search Algorithm Properties

Optimality

An solution found by the search algorithm is guaranteed to be optimal.

- Hill-climbing is not optimal.

Completeness

The algorithm is guaranteed to find a solution to a given problem if one exists.

- Hill-climbing is not complete.

Hill-Climbing

• So what is hill-climbing good for?

def UniformCostSearch(s_I): $OPEN \leftarrow \{s_I\}, CLOSED \leftarrow \{\},\$ $g(s_I) = 0, parent(s_I) = \emptyset$ while $OPEN \neq \{\}$: $p \leftarrow \operatorname{argmin}_{\{s' \in OPEN\}} g(s')$ if p is a goal, return path to p **for** $c \in children(p)$: **if** $c \notin OPEN \cup CLOSED$: $g(c) = g(p) + \kappa(p, c)$ parent(c) = p $OPEN \leftarrow OPEN \cup \{c\}$ **else if** $g(c) > g(p) + \kappa(p,c)$: $g(c) = g(p) + \kappa(p,c)$ parent(c) = p**if** $c \in CLOSED$: $OPEN \leftarrow OPEN \cup \{c\}$ $CLOSED \leftarrow CLOSED - \{c\}$ $OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}$ **return** No solution exists

Uniform-Cost Search

Optimality

An solution found by the search algorithm is guaranteed to be optimal.

- Uniform-cost search is optimal

Completeness

The algorithm is guaranteed to find a solution to a given problem if one exists.

- Uniform-cost search is complete on finite state-spaces.


```
\begin{aligned} \textbf{def UniformCostSearch}(s_l): \\ OPEN &\leftarrow \{s_l\}, CLOSED \leftarrow \{\}, \\ g(s_l) &= 0, parent(s_l) = \emptyset \\ \textbf{while } OPEN &\neq \{\}: \\ \textbf{p} &\leftarrow \textbf{argmin}_{\{s' \in OPEN\}} g(s') \\ \textbf{if } p \text{ is a goal, } \textbf{return } \text{path to } p \\ \textbf{for } c &\in children(p): \\ &\quad if c \notin OPEN \cup CLOSED: \\ &\quad g(c) &= g(p) + \kappa(p, c) \\ &\quad parent(c) &= p \\ &\quad OPEN \leftarrow OPEN \cup \{c\} \\ \textbf{else if } g(c) &> g(p) + \kappa(p, c): \\ &\quad g(c) &= g(p)
```

```
\begin{aligned} \textbf{def UniformCostSearch}(s_l): \\ OPEN &\leftarrow \{s_l\}, CLOSED \leftarrow \{\}, \\ g(s_l) &= 0, parent(s_l) = \emptyset \\ \textbf{while } OPEN &\neq \{\}: \\ \textbf{p} &\leftarrow \textbf{SelectNode}(OPEN) \\ \textbf{if } p \textbf{ is a goal, return path to } p \\ \textbf{for } c &\in children(p): \\ \textbf{if } c \notin OPEN \cup CLOSED: \\ g(c) &= g(p) + \kappa(p, c) \\ parent(c) &= p \\ OPEN \leftarrow OPEN \cup \{c\} \\ \textbf{else if } g(c) &> g(p) + \kappa(p, c): \\ g(c) &= g(p) + \kappa(p, c): \\ g(c)
```

Open-Closed List Algorithms

- Open-Closed List (OCL) algorithms
 - Generalizes uniform-cost search
 - Allows for different ways of selecting nodes from OPEN
- Will use the heuristic function in SelectNode

Best-First Search

Best-first search using an evaluation function

 $\Phi: nodes \to \mathbb{R}^{\geq 0}$

- Defines the "value" of a node
 - Always selects the node with the lowest $\Phi\text{-}\mathrm{cost}$

def SelectNode(OPEN): **return** argmin $_{\{n' \in OPEN\}} \Phi(n')$

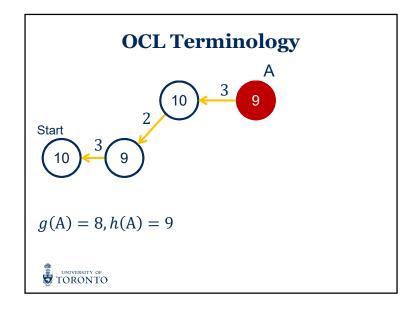
Best-First Search

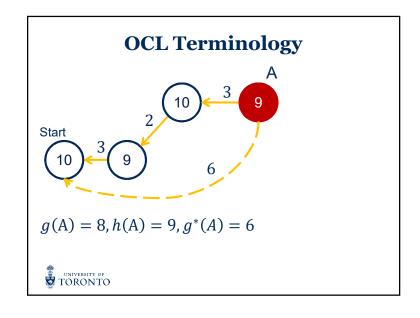
Best-first search using an evaluation function

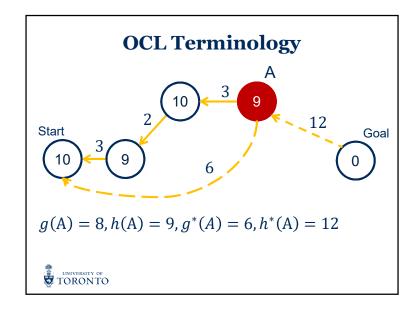
$$\Phi$$
: nodes $\rightarrow \mathbb{R}^{\geq 0}$

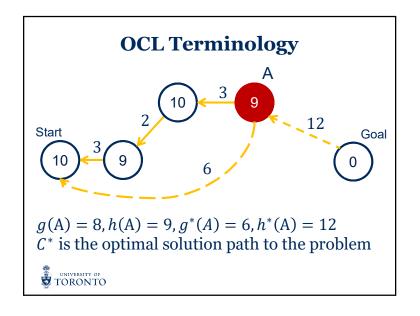
def SelectNode(OPEN): **return** argmin $_{\{n' \in OPEN\}} \Phi(n')$

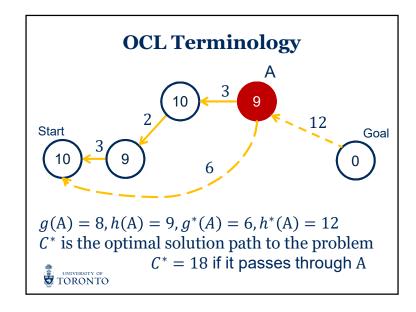
• Uniform-cost search uses $\Phi(n) = g(n)$





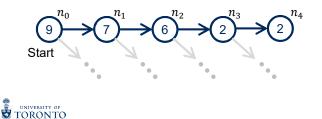






Candidate Path Lemma

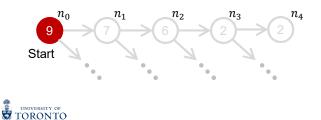
Let $P = [n_0, ..., n_k]$ be an optimal path to a given problem. Then at any time prior to the expansion of a goal node, there will be some node n_i from P in OPEN with the optimal g-cost (ie. $g(n) = g^*(n)$).



OCL Algorithms

Candidate Path Lemma

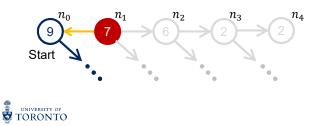
Let $P = [n_0, ..., n_k]$ be an optimal path to a given problem. Then at any time prior to the expansion of a goal node, there will be some node n_i from P in OPEN with the optimal g-cost (ie. $g(n) = g^*(n)$).



OCL Algorithms

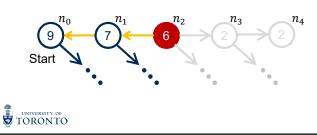
Candidate Path Lemma

Let $P = [n_0, ..., n_k]$ be an optimal path to a given problem. Then at any time prior to the expansion of a goal node, there will be some node n_i from P in OPEN with the optimal g-cost (ie. $g(n) = g^*(n)$).



Candidate Path Lemma

Let $P = [n_0, ..., n_k]$ be an optimal path to a given problem. Then at any time prior to the expansion of a goal node, there will be some node n_i from P in OPEN with the optimal g-cost (ie. $g(n) = g^*(n)$).

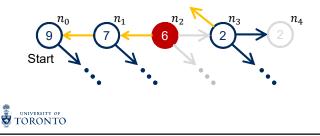


def OCL(s_I): $OPEN \leftarrow \{s_I\}, CLOSED \leftarrow \{\},\$ $g(s_I) = 0, parent(s_I) = \emptyset$ while $OPEN \neq \{\}$: $p \leftarrow SelectNode(OPEN)$ if p is a goal, **return** path to p**for** $c \in children(p)$: **if** $c \notin OPEN \cup CLOSED$: $g(c) = g(p) + \kappa(p, c)$ parent(c) = p $OPEN \leftarrow OPEN \cup \{c\}$ **else if** $g(c) > g(p) + \kappa(p,c)$: $g(c) = g(p) + \kappa(p,c)$ parent(c) = p**if** $c \in CLOSED$: $OPEN \leftarrow OPEN \cup \{c\}$ $CLOSED \leftarrow CLOSED - \{c\}$ $OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}$ return No solution exists

OCL Algorithms

Candidate Path Lemma

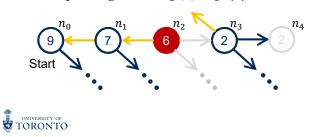
Let $P = [n_0, ..., n_k]$ be an optimal path to a given problem. Then at any time prior to the expansion of a goal node, there will be some node n_i from P in OPEN with the optimal g-cost (ie. $g(n) = g^*(n)$).

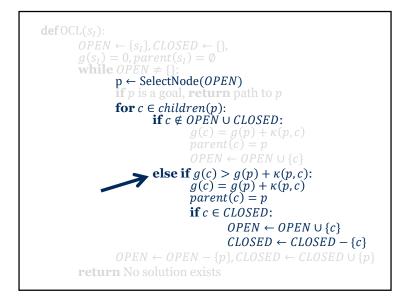


```
\begin{aligned} & \operatorname{defOCL}(s_{I}) \colon \\ & \operatorname{OPEN} \leftarrow \{s_{I}\}, \operatorname{CLOSED} \leftarrow \{\}, \\ & g(s_{I}) = 0, \operatorname{parent}(s_{I}) = \emptyset \\ & \text{while } \operatorname{OPEN} \neq \{\} \colon \\ & p \leftarrow \operatorname{SelectNode}(\operatorname{OPEN}) \\ & \text{if } p \text{ is a goal, return path to } p \end{aligned} \\ & \text{for } c \in \operatorname{children}(p) \colon \\ & \text{if } c \notin \operatorname{OPEN} \cup \operatorname{CLOSED} \colon \\ & g(c) = g(p) + \kappa(p, c) \\ & parent(c) = p \\ & \operatorname{OPEN} \leftarrow \operatorname{OPEN} \cup \{c\} \end{aligned} \\ & \text{else if } g(c) > g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(p) + \kappa(p, c) \colon \\ & g(c) = g(c) = g(c) + \kappa(p, c) \colon \\ & g(c) = g(c) = g(c) \to \\ \\ & g(c) = g(c) = g(c) \to \\ \\ & g(c) = g(c) = g(c)
```

Candidate Path Lemma

Let $P = [n_0, ..., n_k]$ be an optimal path to a given problem. Then at any time prior to the expansion of a goal node, there will be some node n_i from P in OPEN with the optimal g-cost (ie. $g(n) = g^*(n)$).

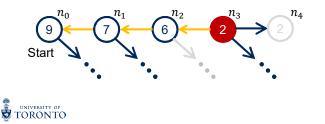




OCL Algorithms

Candidate Path Lemma

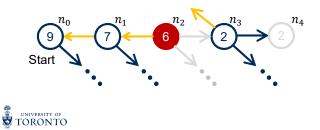
Let $P = [n_0, ..., n_k]$ be an optimal path to a given problem. Then at any time prior to the expansion of a goal node, there will be some node n_i from P in OPEN with the optimal g-cost (ie. $g(n) = g^*(n)$).



OCL Algorithms

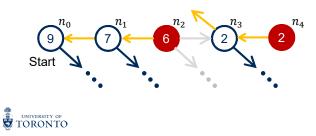
Candidate Path Lemma

Let $P = [n_0, ..., n_k]$ be an optimal path to a given problem. Then at any time prior to the expansion of a goal node, there will be some node n_i from P in OPEN with the optimal g-cost (ie. $g(n) = g^*(n)$).



Candidate Path Lemma

Let $P = [n_0, ..., n_k]$ be an optimal path to a given problem. Then at any time prior to the expansion of a goal node, there will be some node n_i from P in OPEN with the optimal g-cost (ie. $g(n) = g^*(n)$).



OCL Algorithms

OCL Completeness

Any OCL algorithm is complete on any solvable problem with a finite state-space.

Proof Sketch

- 1. The candidate path lemma ensures that *OPEN* can never become empty before a goal state is expanded.
- 2. There are a finite number of paths to any node, so every node can only be re-expanded a finite number of times.

OCL Algorithms

OCL Completeness

Any OCL algorithm is complete on any solvable problem with a finite state-space.

Proof Sketch

1. The candidate path lemma ensures that *OPEN* can never become empty before a goal state is expanded.

The A* Algorithm

• Best-first search using an **evaluation function**

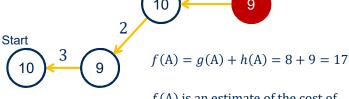
$$\Phi: nodes \to \mathbb{R}^{\geq 0}$$

def SelectNode(OPEN): **return** argmin $\{n' \in OPEN\}$ $\Phi(n')$

• A^* uses $\Phi(n) = f(n) = g(n) + h(n)$

The A* Algorithm

def SelectNode(OPEN): **return** argmin $\{n' \in OPEN\}$ g(n') + h(n')



f(A) is an estimate of the cost of the solution path through A

Optimality of A*

Optimality of A*

UNIVERSITY OF TORONTO

If the heuristic being used is admissible, then any solution found by A* will be optimal.

Heuristic Admissibility

- A*'s optimality relies on **admissibility**
 - Ensures the heuristic never overestimates the cost to go
 - "One-sided error"

Heuristic Admissibility

Heuristic *h* is **admissible** if $h(n) \le h^*(n)$ for all *n*.

Optimality of A*

Optimality of A*

If the heuristic being used is admissible, then any solution found by A* will be optimal.

Proof Sketch.

By contradiction, show that a goal state along a suboptimal solution cannot be expanded before all the nodes along the optimal solution path.

Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search

Uniform-cost search will only find optimal solutions.

Using the Heuristic to Prune

Avoiding Node Expansions

If the heuristic being used is admissible, then A* will not expand any nodes for which $f(n) > C^*$.

Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search

Uniform-cost search will only find optimal solutions.

Proof Sketch

Uniform-cost search is equivalent to A* using the heuristic h such that h(n) = 0 for all n.

Using the Heuristic to Prune

Avoiding Node Expansions

If the heuristic being used is admissible, then A* will not expand any nodes for which $f(n) > C^*$.

Proof Sketch.

Before a goal is found, there will always be a node n' from the optimal solution path on *OPEN* such that

$$f(n') = g(n') + h(n') = g^*(n') + h(n')$$

$$\leq g^*(n') + h^*(n') = C^*$$

A* vs. Uniform-Cost Search

• Uniform-cost search will not expand any n such that

$$g(n) > C^*$$

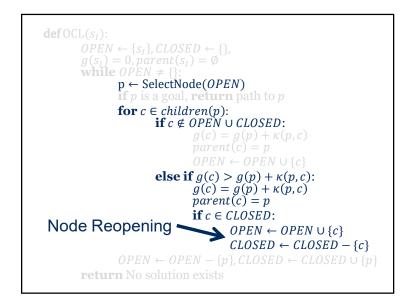
- A* may be able to expand fewer unique states than uniform-cost search due to heuristic pruning
- But what about re-expansions?

Heuristic Consistency

Heuristic Consistency

Heuristic h is **consistent** if for any pair of node p and c, where c is a child of p, the following holds:

$$h(p) \le h(c) + \kappa(p, c)$$

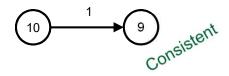


Heuristic Consistency

Heuristic Consistency

Heuristic h is **consistent** if for any pair of node p and c, where c is a child of p, the following holds:

$$h(p) \le h(c) + \kappa(p, c)$$

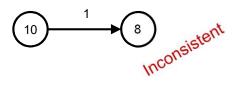


Heuristic Consistency

Heuristic Consistency

Heuristic h is **consistent** if for any pair of node p and c, where c is a child of p, the following holds:

$$h(p) \le h(c) + \kappa(p, c)$$



Heuristic Consistency

Re-expansion Theorem

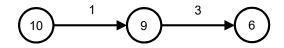
If the heuristic being used by A* is consistent, then A* will never **reopen** a node.

UNIVERSITY OF TORONTO

Heuristic Consistency

 Consistency guarantees a heuristic version of the triangle inequality:

$$h(p) \le h(d) + \kappa(p,c) + \kappa(c,d)$$



Heuristic Consistency

Re-expansion Theorem

If the heuristic being used by A* is consistent, then A* will never **reopen** a node.

or alternatively

If the heuristic being used by A* is consistent, then whenever A* expands a node n, $g(n) = g^*(n)$

A* vs. Uniform-Cost Search

- A* will do at least as much pruning as UCS
- If the heuristic is consistent, no node will be expanded more than once
- If the heuristic allows some pruning, A* should be faster than UCS

Weighted A* (WA*)

• Weighted A* is also a best-first search algorithm

 $\begin{array}{c} \textbf{def} \ \ \text{SelectNode}(\textit{OPEN}) \colon \\ \quad \quad \textbf{return} \ \text{argmin}_{\{n' \in \textit{OPEN}\}} \ \Phi(n') \end{array}$

- WA* uses $\Phi(n) = f_w(n) = g(n) + w \cdot h(n)$
 - The **weight** w is an parameter where $w \ge 1$

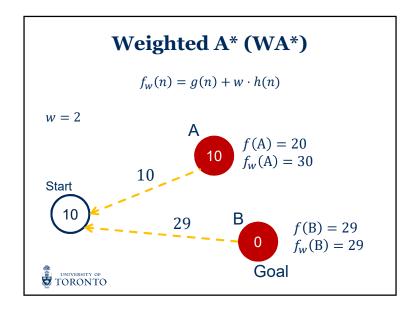
The A* Algorithm

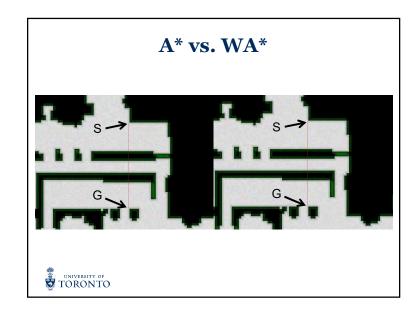
- Recall proof that A* is optimal
- Similar argument shows A^* expands every node with $f(n) < C^*$ where C^* is the optimal solution cost
 - This is how it proves that the optimal solution has been found
- Proving optimality of a found solution path can make A* prohibitively expensive

Weighted A* (WA*)

$$f_w(n) = g(n) + w \cdot h(n)$$

- The weight impacts the relative importance of the h-cost and the g-cost
 - − *h*-cost dominates the evaluation for large *w*
 - WA* becomes greedier on h as w increases





Weighted A* Properties

Optimality

Weighted A* is not an optimal algorithm.

Completeness

Weighted A* is a complete algorithm.

Weighted A* Suboptimality

Bounded Suboptimality

If the heuristic being used is admissible, then any solution found by WA* will cost no more than $w \cdot C^*$.

Weighted A* Suboptimality

Bounded Suboptimality

If the heuristic being used is admissible, then any solution found by WA* will cost no more than $w \cdot C^*$.

Proof Sketch.

This is ensured by the f_w and the way nodes are selected for expansion.

Greedy Best-First Search

- GBFS is commonly used in domain-independent planners
- Usually faster than A* and low-weight WA*
- GBFS is complete but suboptimal
 - No bound on suboptimality

Greedy Best-First Search

- Greedy Best-First Search (GBFS) is WA* "in the limit"
 - Still a best-first search, but maximally greedy on h

def SelectNode(OPEN): **return** argmin $_{\{n' \in OPEN\}} \Phi(n')$

- WA* uses $\Phi(n) = f_{GBFS}(n) = h(n)$
 - Ignores the heuristic completely
- Also called Pure Heuristic Search

Modern Optimal Search Research

- Low memory algorithms
 - IDA*, RBFS, EPEA*, SMA*, ...
- Better heuristics
- Pruning methods for transpositions
 - Stubborn sets
- Bidirectional Search
 - MM, SFBDS, ...

Suboptimal Search Research

- Non-uniform cost domains
 - GBFS and WA* can struggle if action costs vary greatly
- Understanding impact of different decisions
 - Re-expansions, tie-breaking, weight value
- Exploration in GBFS
 - $-\epsilon$ -greedy, Type-based exploration, novelty-based pruning

Summary

- Hill-climbing as a simple way to use a heuristic
- Generalized UCS to the OCL algorithm framework
 - Showed how Best-First Search fits into this framework
- Introduced A* as an OCL algorithm
 - Considered several properties
- Considered WA* and GBFS as suboptimal alternatives

