Heuristic Search Algorithms
and Markov Decision Processes

Rick Valenzano and Sheila Mcllraith

e
% TORONTO

Recap of Last Week

Considered variants of sequential decision-making
— Deterministic vs Non-Deterministic vs Stochastic
— Fully Observable vs. Partially Observable
— Model-based vs Model-free
— Goal-seeking vs. Reward seeking

Started with classical planning

— Fully observable, deterministic, implicitly defined
transition system, defined start state and goal tests

Heuristic search-based planning
— Looks at planning as graph search

UNIVERSITY OF

TORONTO

Recap of Last Week

= Can use Dijkstra’s search
— Or incremental version, Uniform-Cost Search

= Uniform-cost search ignores the state information
— Not practical

= Heuristic functions encode state information
— Provides an estimate of the cost-to-go
— Encodes domain information or automatically generated

UNIVERSITY OF

TORONTO

b

&
¥

This Week

Hill climbing techniques

The A* Algorithm

— Completeness and optimality
Greedy Best-First Search

Weighted A*
— Bounded suboptimality

Markov Decision Processes
— Stochastic state transitions
— Rewards vs goals
— Value Functions, Bellman equations

UNIVERSITY OF

TORONTO

2016-09-29

Employing Heuristics

= Given a heuristic function h
— What do we do with it?

L3
¥ TORONTO

Hill-Climbing

» Commit to the “best” child according to h

Start

@
& TORONT

Hill-Climbing

= Commit to the “best” child according to h

%‘ ERSITY OF
© TORONTO

Hill-Climbing

» Commit to the “best” child according to h

Start

&
& TORONTO

2016-09-29

Hill-Climbing

= Commit to the “best” child according to h

4
UNIVERSITY OF
Q TORONTO

Hill-Climbing

= Commit to the “best” child according to h

Start

?‘ UNIVERSITY OF
® TORONTO

Hill-Climbing

» Commit to the “best” child according to h

Start

® TORONTO

Start

Hill-Climbing

= What did we do now?

®
& TORONTO

2016-09-29

Hill-Climbing

= Multiple options
— Pick “best of bad options”
— Pick randomly
— All kinds of local search strategies

g@ TORONTO

Enforced Hill-Climbing

Start

UNIVERSITY OF
» TORONTO

;%

@

Enforced Hill-Climbing

Start

% ERSITY OF
® TORONTO

Enforced Hill-Climbing

Start m

@
& TORONTO

2016-09-29

Enforced Hill-Climbing

Start @ I

@
UNIVERSITY OF
@ TORONTO

Enforced Hill-Climbing

&
T UNIVERSITY OF
& TORONTO

Enforced Hill-Climbing

?‘ UNIVERSITY OF
® TORONTO

Enforced Hill-Climbing

»
& TORONTO

2016-09-29

Enforced Hill-Climbing

Start @ °

L3
¥ TORONTO

Enforced Hill-Climbing

Start m °

@
& TORONT

Search Algorithm Properties

Optimality
An solution found by the search algorithm is
guaranteed to be optimal.

Completeness

The algorithm is guaranteed to find a solution to a
given problem if one exists.

%‘ ERSITY OF
© TORONTO

Search Algorithm Properties

Optimality

An solution found by the search algorithm is
guaranteed to be optimal.
— Hill-climbing is not optimal.

Completeness

The algorithm is guaranteed to find a solution to a
given problem if one exists.
— Hill-climbing is not complete.

&
& TORONTO

2016-09-29

Hill-Climbing

= So what is hill-climbing good for?

Eid

UNIVERSITY OF

2 TORONTO

def UniformCostSearch(s;)

Uniform-Cost Search
Optimality
An solution found by the search algorithm is

guaranteed to be optimal

— Uniform-cost search is optimal

Completeness

The algorithm is guaranteed to find a solution to a
given problem if one exists

— Uniform-cost search is complete on finite state-spaces

OPEN « {s;},CLOSED « {}
g(s;) = 0,parent(s;) =
whlle OPEN # {}:

p « argmin

{s eoPEN}Y (s"
if p is a goal, return path to p
for c € children(p

ifcé¢ OPEN U CLOSED:
g = eg(p) +x(p,c)
parent(c)
OPEN « OPEN U {c}
else ifg(c) >g(p) +k(p,c):
g(c —(g(p) +x(p,c)
parent(c)

if c € CLOSED:

OPEN « OPEN U {c}

CLOSED « CLOSED — {c}
OPEN « OPEN — {p},CLOSED « CLOSED U {p}
return No solution exists

@
T UNIVERSITY OF

> TORONTO

p — argmingcoppg(s")

2016-09-29

p < SelectNode(OPEN)

Open-Closed List Algorithms

» Open-Closed List (OCL) algorithms
— Generalizes uniform-cost search
— Allows for different ways of selecting nodes from OPEN

= Will use the heuristic function in SelectNode

UNIVERSITY OF
¥ TORONTO

Qs

Best-First Search
= Best-first search using an evaluation function

® : nodes —» R=°

= Defines the “value” of a node
— Always selects the node with the lowest ®-cost

def SelectNode(OPEN):
return argming,coppy) P(n)

% ERSITY OF
® TORONTO

Best-First Search

= Best-first search using an evaluation function

® : nodes —» R=Y

def SelectNode(OPEN):
return argming,rcoppy) P(n')

» Uniform-cost search uses ®(n) = g(n)

@
& TORONTO

2016-09-29

OCL Terminology

A
'@
2
Start
©

g(A) =8,h(A) =9

@
UNIVERSITY OF
@ TORONTO

OCL Terminology

A
'@
2
Start
3
() :

g(A) =8h(A)=9,9"(4) =6

&
T UNIVERSITY OF
& TORONTO

OCL Terminology

A
'@
Start 2 12 Goal
3
() ;

g(A) = 8,h(A) = 9,9 (A) = 6,h*(A) = 12

?‘ UNIVERSITY OF
® TORONTO

OCL Terminology

A
'@
Start 2 12 Goal
3
(1) ;

g(A) =8 h(A) =9,g%(A) = 6,h*(A) = 12
C* is the optimal solution path to the problem

@
& TORONTO

2016-09-29

OCL Terminology

A
RO
2 12

Start Goal
3
6

g(A) =8 h(A) =9,g"(4) = 6,h*(A) = 12
C* is the optimal solution path to the problem
C* = 18 if it passes through A

L3
¥ TORONTO

OCL Algorithms

Candidate Path Lemma

Let P = [ny, ..., n] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node n; from P in OPEN
with the optimal g-cost (ie. g(n) = g*(n)).

Start

UNIVERSITY OF

&
3 ERS: o
¥ TORONTO

OCL Algorithms

Candidate Path Lemma

Let P = [ny, ..., n,] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node n; from P in OPEN
with the optimal g-cost (ie. g(n) = g*(n)).

10 n n; ns Ny

Start

%‘ ERSITY OF
© TORONTO

OCL Algorithms

Candidate Path Lemma

Let P = [ny, ..., ni | be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node n; from P in OPEN
with the optimal g-cost (ie. g(n) = g*(n)).

o '}
Start
[)
[]
[)

@
& TORONTO

n; n3 Ny

2016-09-29

10

OCL Algorithms

Candidate Path Lemma

Let P = [ny, ..., n,] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node n; from P in OPEN
with the optimal g-cost (ie. g(n) = g*(n)).

o n anz
Start N\ N
[] []
[] []

@
UNIVERSITY OF

2 TORONTO

ns Ny

OCL Algorithms

Candidate Path Lemma

Let P = [ny, ..., n] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node n; from P in OPEN
with the optimal g-cost (ie. g(n) = g*(n)).

no n enz 3
Start N\ N ;
[] [] []
[] []

Ny
[]
[]

UNIVERSITY OF

&
& TORONTO

def OCL(s)):
OPEN « {s;},CLOSED « {3},
g(sp) = 0, parent(s;) = 0
while OPEN = {}:
p < SelectNode(OPEN)
if p is a goal, return path to p

for c € children(p):
if c ¢ OPEN U CLOSED:

g() = egc(p) +x(p,c)

parent
OPEN < OPEN U {c}
elseif g(c) > g(p) + x(p,c):

g(c) = g(p) +x(p,c)
parent(c) =p

if c € CLOSED:
OPEN « OPEN U {c}
CLOSED « CLOSED — {c}
OPEN « OPEN — {p},CLOSED « CLOSED U {p}
return No solution exists

p < SelectNode(OPEN)

for c € children(p):
if c ¢ OPEN U CLOSED:

elseif g(c) > g(p) + k(p,c):
g(c) = g() +x(p,c)
parent(c) =p
if c € CLOSED:
Node Reopening "=~ OPEN < OPEN U{c}
CLOSED « CLOSED — {c}

2016-09-29

11

OCL Algorithms

Candidate Path Lemma

Let P = [ny, ..., n,] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node n; from P in OPEN
with the optimal g-cost (ie. g(n) = g*(n)).

o n anz n3
Start N\ N ;
[] [] []
[] []

Ny

@
¥ TORONTO

OCL Algorithms

Candidate Path Lemma

Let P = [ny, ..., n] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node n; from P in OPEN
with the optimal g-cost (ie. g(n) = g*(n)).

no n @nz 713
Start N\ N ;

p < SelectNode(OPEN)

for c € children(p):
if c ¢ OPEN U CLOSED:

else ifg(c) > g(p) + k(p, c)
/ g(c) —(q 2 +K(p,
parent(c)
ifce CLOSED
OPEN « OPEN U {c}

CLOSED « CLOSED — {c}

@ TORONTO
OCL Algorithms
Candidate Path Lemma

Let P = [ny, ..., ni | be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node n; from P in OPEN
with the optimal g-cost (ie. g(n) = g*(n)).

no n enz 3
Start N\ N ;
[] [] []
[] []

Ny

@
& TORONTO

2016-09-29

12

OCL Algorithms

Candidate Path Lemma

Let P = [ny, ..., n,] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node n; from P in OPEN
with the optimal g-cost (ie. g(n) = g*(n)).

o n anz n3 en4
Start N\ N N
[] [] []
[] [] []
[] [] []

@
UNIVERSITY OF
@ TORONTO

OCL Algorithms

OCL Completeness

Any OCL algorithm is complete on any solvable
problem with a finite state-space.

Proof Sketch

1. The candidate path lemma ensures that OPEN can
never become empty before a goal state is expanded.

&
T UNIVERSITY OF
& TORONTO

OCL Algorithms

OCL Completeness

Any OCL algorithm is complete on any solvable
problem with a finite state-space.

Proof Sketch

1. The candidate path lemma ensures that OPEN can
never become empty before a goal state is expanded.

2. There are a finite number of paths to any node, so
every node can only be re-expanded a finite number of
times.

?‘ UNIVERSITY OF
® TORONTO

The A* Algorithm

= Best-first search using an evaluation function

® : nodes —» R=Y

def SelectNode(OPEN):
return argming,rcoppy) P(n')

» A*uses ®(n) = f(n) = g(n) + h(n)

@
& TORONTO

2016-09-29

13

The A* Algorithm

def SelectNode(OPEN):
return argming,scoppyy (') + h(n")

A
B ¢
Start
‘ @ f(A) =gA) +h(A)=8+9 =17

f(A) is an estimate of the cost of

@ TOREAS the solution path through A

Heuristic Admissibility

» A¥*’s optimality relies on admissibility
— Ensures the heuristic never overestimates the cost to go
— “One-sided error”

Heuristic Admissibility
Heuristic h is admissible if h(n) < h*(n) for all n.

UNIVERSITY OF

Optimality of A*

Optimality of A*
If the heuristic being used is admissible, then any
solution found by A* will be optimal.

%‘ ERSITY OF
© TORONTO

Optimality of A*

Optimality of A*
If the heuristic being used is admissible, then any
solution found by A* will be optimal.

Proof Sketch.

By contradiction, show that a goal state along a
suboptimal solution cannot be expanded before all the
nodes along the optimal solution path.

@
& TORONTO

2016-09-29

14

Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search
Uniform-cost search will only find optimal solutions.

4
UNIVERSITY OF
Q TORONTO

Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search
Uniform-cost search will only find optimal solutions.

Proof Sketch

Uniform-cost search is equivalent to A* using the
heuristic h such that h(n) = 0 for all n.

& TORONTO

Using the Heuristic to Prune

Avoiding Node Expansions

If the heuristic being used is admissible, then A* will
not expand any nodes for which f(n) > C*.

?‘ UNIVERSITY OF
® TORONTO

Using the Heuristic to Prune

Avoiding Node Expansions

If the heuristic being used is admissible, then A* will
not expand any nodes for which f(n) > C*.

Proof Sketch.

Before a goal is found, there will always be a node n’
from the optimal solution path on OPEN such that

f(n) =g®)+h®)=g"®)+ hn)
<gm@)+h@)=c

@
& TORONTO

2016-09-29

15

A* vs. Uniform-Cost Search

= Uniform-cost search will not expand any n such that
g >

= A* may be able to expand fewer unique states than
uniform-cost search due to heuristic pruning

= But what about re-expansions?

@
¥ TORONTO

p < SelectNode(OPEN)

for c € children(p):
if c ¢ OPEN U CLOSED:

elseif g(c) > g(p) + k(p,c):
g(c) = g() + x(p,c)
parent(c) =p
. if c € CLOSED:
Node Reopening S~~~ OPEN < OPEN U{c}

CLOSED « CLOSED — {c}

Heuristic Consistency
Heuristic Consistency
Heuristic h is consistent if for any pair of node p and

¢, where c is a child of p, the following holds:

h(p) < h(c) + k(p,c)

% ERSITY OF
® TORONTO

Heuristic Consistency
Heuristic Consistency
Heuristic h is consistent if for any pair of node p and

¢, where c is a child of p, the following holds:

h(p) < h(c) + k(p, c)

@
& TORONTO

2016-09-29

16

Heuristic Consistency

Heuristic Consistency
Heuristic h is consistent if for any pair of node p and
¢, where c is a child of p, the following holds:

h(p) < h(c) + k(p, c)

@
UNIVERSITY OF
Q TORONTO

Heuristic Consistency

» Consistency guarantees a heuristic version of the
triangle inequality:

h(p) < h(d) + k(p,c) + k(c,d)
(D—(O—O

L3
T UNIVERSITY OF
® TORONTO

2016-09-29

Heuristic Consistency

Re-expansion Theorem
If the heuristic being used by A* is consistent, then A*
will never reopen a node.

?‘ UNIVERSITY OF
® TORONTO

Heuristic Consistency
Re-expansion Theorem
If the heuristic being used by A* is consistent, then A*
will never reopen a node.

or alternatively

If the heuristic being used by A* is consistent, then
whenever A* expands a node n, g(n) = g*(n)

@
& TORONTO

17

A* vs. Uniform-Cost Search

= A*will do at least as much pruning as UCS

= If the heuristic is consistent, no node will be
expanded more than once

= If the heuristic allows some pruning, A* should be
faster than UCS

L3

UNIVERSITY OF

& TORONTO

The A* Algorithm

= Recall proof that A* is optimal

Similar argument shows A* expands every node with
f(n) < C* where C* is the optimal solution cost

— This is how it proves that the optimal solution has been
found

» Proving optimality of a found solution path can
make A* prohibitively expensive

UNIVERSITY OF

&
& TORONTO

Weighted A* (WA¥)
= Weighted A* is also a best-first search algorithm

def SelectNode(OPEN):
return argming,rcopgy} P(n')

= WA* uses ®(n) = f,,(n) = gn) +w - h(n)

— The weight w is an parameter where w > 1

%‘ ERSITY OF
© TORONTO

Weighted A* (WA¥)

fw@) =gm) +w - h(n)

» The weight impacts the relative importance of the
h-cost and the g-cost
— h-cost dominates the evaluation for large w
— WA* becomes greedier on h as w increases

o
& TORONTO

2016-09-29

18

Weighted A* (WA¥)
fo() = gn) +w - h(n)
w=2
f(A) =20
fW(A) =30
10
Start
l 29 B 5(g) =29
fW(B) =29
& 1o 10 Goal

]

Weighted A* Properties
Optimality
Weighted A* is not an optimal algorithm.

Completeness

Weighted A* is a complete algorithm.

TORONTO

A* vs. WA*

&
& TORONTO

Weighted A* Suboptimality

Bounded Suboptimality

If the heuristic being used is admissible, then any
solution found by WA* will cost no more than w - C*.

&
& TORONTO

2016-09-29

19

Weighted A* Suboptimality

Bounded Suboptimality
If the heuristic being used is admissible, then any

solution found by WA* will cost no more than w - C*.

Proof Sketch.

This is ensured by the f,, and the way nodes are
selected for expansion.

@
¥ TORONTO

Greedy Best-First Search

» Greedy Best-First Search (GBFS) is WA*
“in the limit”
— Still a best-first search, but maximally greedy on h

def SelectNode(OPEN):
return argming,coppy) P(n)

= WA* uses ®(n) = fggrs(n) = h(n)
— Ignores the heuristic completely

= Also called Pure Heuristic Search

&
¥ UNIVERSITY OF
¥ TORONTO

Greedy Best-First Search

= GBFS is commonly used in domain-independent
planners

= Usually faster than A* and low-weight WA*

= GBFS is complete but suboptimal
— No bound on suboptimality

% ERSITY OF
® TORONTO

Modern Optimal Search Research

* Low memory algorithms
— IDA*, RBFS, EPEA*, SMA*, ...

= Better heuristics

* Pruning methods for transpositions
— Stubborn sets

= Bidirectional Search
— MM, SFBDS, ...

@
& TORONTO

2016-09-29

20

Suboptimal Search Research

= Non-uniform cost domains
— GBFS and WA* can struggle if action costs vary greatly

» Understanding impact of different decisions
— Re-expansions, tie-breaking, weight value

= Exploration in GBFS
— e-greedy, Type-based exploration, novelty-based pruning

@
UNIVERSITY OF

& TORONTO

Summary

Hill-climbing as a simple way to use a heuristic

= Generalized UCS to the OCL algorithm framework
— Showed how Best-First Search fits into this framework

» Introduced A* as an OCL algorithm
— Considered several properties

* Considered WA* and GBFS as suboptimal
alternatives

UNIVERSITY OF

&
& TORONTO

2016-09-29

21

