
2016-09-29

1

Heuristic Search Algorithms
and Markov Decision Processes

Rick Valenzano and Sheila McIlraith

Recap of Last Week

 Considered variants of sequential decision-making
– Deterministic vs Non-Deterministic vs Stochastic
– Fully Observable vs. Partially Observable
– Model-based vs Model-free
– Goal-seeking vs. Reward seeking

 Started with classical planning
– Fully observable, deterministic, implicitly defined

transition system, defined start state and goal tests

 Heuristic search-based planning
– Looks at planning as graph search

Recap of Last Week

 Can use Dijkstra’s search
– Or incremental version, Uniform-Cost Search

 Uniform-cost search ignores the state information
– Not practical

 Heuristic functions encode state information
– Provides an estimate of the cost-to-go

– Encodes domain information or automatically generated

This Week

 Hill climbing techniques

 The A* Algorithm
– Completeness and optimality

 Greedy Best-First Search

 Weighted A*
– Bounded suboptimality

 Markov Decision Processes
– Stochastic state transitions
– Rewards vs goals
– Value Functions, Bellman equations

2016-09-29

2

Employing Heuristics

 Given a heuristic function ℎ
– What do we do with it?

Hill-Climbing

 Commit to the “best” child according to ℎ

1010

Start

Hill-Climbing

 Commit to the “best” child according to ℎ

1010

99

1010

1111

Start

Hill-Climbing

 Commit to the “best” child according to ℎ

1010

99

Start

2016-09-29

3

Hill-Climbing

 Commit to the “best” child according to ℎ

1010

99

1010

88

1010

Start

Hill-Climbing

 Commit to the “best” child according to ℎ

1010

99 88

Start

Hill-Climbing

 Commit to the “best” child according to ℎ

1010

99 88 99

88

Start

Hill-Climbing

 What did we do now?

1010

99 88 99

88

Start

2016-09-29

4

Hill-Climbing

 Multiple options
– Pick “best of bad options”

– Pick randomly

– All kinds of local search strategies

Enforced Hill-Climbing

1010

1010

99

1010

Start

Enforced Hill-Climbing

1010 99

Start

Enforced Hill-Climbing

1010 99

Start

1010

1111

1010

2016-09-29

5

Enforced Hill-Climbing

1010 99

Start

1010

1111

1010 1010

99

Enforced Hill-Climbing

1010 99

Start

1010

1111

1010

1111

1010

1010

99

Enforced Hill-Climbing

1010 99

Start

1010

1111

1010

99

1010

1111

1010

1010

99

Enforced Hill-Climbing

1010 99

Start

1010

1111

1010

99

1010

1111

1010

1010

99

88

99

2016-09-29

6

Enforced Hill-Climbing

1010 99

Start
1010

99

88

Enforced Hill-Climbing

1010 99

Start
1010

99

88

Search Algorithm Properties

Optimality

An solution found by the search algorithm is
guaranteed to be optimal.

Completeness

The algorithm is guaranteed to find a solution to a
given problem if one exists.

Search Algorithm Properties

Optimality

An solution found by the search algorithm is
guaranteed to be optimal.

– Hill-climbing is not optimal.

Completeness

The algorithm is guaranteed to find a solution to a
given problem if one exists.

– Hill-climbing is not complete.

2016-09-29

7

Hill-Climbing

 So what is hill-climbing good for?

Uniform-Cost Search

Optimality

An solution found by the search algorithm is
guaranteed to be optimal.

– Uniform-cost search is optimal

Completeness

The algorithm is guaranteed to find a solution to a
given problem if one exists.

– Uniform-cost search is complete on finite state-spaces.

def UniformCostSearch(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

p ← argmin ௦ᇲ∈ை௉ாே ݃ ᇱݏ

if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

def UniformCostSearch(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

ܘ ← ܖܑܕ܏ܚ܉ ࢙ᇲ∈ࡺࡱࡼࡻ ࢍ ࢙ᇱ

if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

2016-09-29

8

def UniformCostSearch(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

ܘ ← (ࡺࡱࡼࡻ)܍܌ܗۼܜ܋܍ܔ܍܁
if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

Open-Closed List Algorithms

 Open-Closed List (OCL) algorithms
– Generalizes uniform-cost search

– Allows for different ways of selecting nodes from OPEN

 Will use the heuristic function in SelectNode

Best-First Search

 Best-first search using an evaluation function

Φ ∶ nodes → ℝஹ଴

 Defines the “value” of a node
– Always selects the node with the lowest Φ-cost

def SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே Φ ݊ᇱ

Best-First Search

 Best-first search using an evaluation function

Φ ∶ nodes → ℝஹ଴

def SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே Φ ݊ᇱ

 Uniform-cost search uses Φ ݊ = ݃ ݊

2016-09-29

9

OCL Terminology

1010 99

Start

1010 99

3

2

3
A

݃ A = 8, ℎ A = 9

OCL Terminology

1010 99

Start

1010 99

3

2

3
A

݃ A = 8, ℎ A = 9, ݃∗ ܣ = 6

6

OCL Terminology

1010 99

Start

1010 99

3

2

3
A

݃ A = 8, ℎ A = 9, ݃∗ ܣ = 6, ℎ∗ A = 12

6 00

Goal
12

OCL Terminology

1010 99

Start

1010 99

3

2

3
A

݃ A = 8, ℎ A = 9, ݃∗ ܣ = 6, ℎ∗ A = 12
∗ܥ is the optimal solution path to the problem

6 00

Goal
12

2016-09-29

10

OCL Terminology

1010 99

Start

1010 99

3

2

3
A

݃ A = 8, ℎ A = 9, ݃∗ ܣ = 6, ℎ∗ A = 12
∗ܥ is the optimal solution path to the problem

∗ܥ = 18 if it passes through A

6 00

Goal
12

OCL Algorithms

Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node ݊௜ from P in OPEN
with the optimal g-cost (ie. ݃ ݊ = ݃∗(݊)).

99 66 22

Start

77 22
݊଴ ݊ଵ ݊ଶ ݊ଷ ݊ସ

OCL Algorithms

Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node ݊௜ from P in OPEN
with the optimal g-cost (ie. ݃ ݊ = ݃∗(݊)).

99 66 22

Start

77 22
݊଴ ݊ଵ ݊ଶ ݊ଷ ݊ସ

OCL Algorithms

Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node ݊௜ from P in OPEN
with the optimal g-cost (ie. ݃ ݊ = ݃∗(݊)).

99 66 22

Start

77 22
݊଴ ݊ଵ ݊ଶ ݊ଷ ݊ସ

2016-09-29

11

OCL Algorithms

Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node ݊௜ from P in OPEN
with the optimal g-cost (ie. ݃ ݊ = ݃∗(݊)).

99 66 22

Start

77 22
݊଴ ݊ଵ ݊ଶ ݊ଷ ݊ସ

OCL Algorithms

Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node ݊௜ from P in OPEN
with the optimal g-cost (ie. ݃ ݊ = ݃∗(݊)).

99 66 22

Start

77 22
݊଴ ݊ଵ ݊ଶ ݊ଷ ݊ସ

def OCL(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

p ← SelectNode(ܱܲܰܧ)
if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

def OCL(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

p ← SelectNode(ܱܲܰܧ)
if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

Node Reopening

2016-09-29

12

OCL Algorithms

Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node ݊௜ from P in OPEN
with the optimal g-cost (ie. ݃ ݊ = ݃∗(݊)).

99 66 22

Start

77 22
݊଴ ݊ଵ ݊ଶ ݊ଷ ݊ସ

OCL Algorithms

Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node ݊௜ from P in OPEN
with the optimal g-cost (ie. ݃ ݊ = ݃∗(݊)).

99 66 22

Start

77 22
݊଴ ݊ଵ ݊ଶ ݊ଷ ݊ସ

def OCL(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

p ← SelectNode(ܱܲܰܧ)
if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

OCL Algorithms

Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node ݊௜ from P in OPEN
with the optimal g-cost (ie. ݃ ݊ = ݃∗(݊)).

99 66 22

Start

77 22
݊଴ ݊ଵ ݊ଶ ݊ଷ ݊ସ

2016-09-29

13

OCL Algorithms

Candidate Path Lemma

Let ܲ = [݊଴, … , ݊௞] be an optimal path to a given
problem. Then at any time prior to the expansion of a
goal node, there will be some node ݊௜ from P in OPEN
with the optimal g-cost (ie. ݃ ݊ = ݃∗(݊)).

99 66 22

Start

77 22
݊଴ ݊ଵ ݊ଶ ݊ଷ ݊ସ

OCL Algorithms

OCL Completeness

Any OCL algorithm is complete on any solvable
problem with a finite state-space.

Proof Sketch

1. The candidate path lemma ensures that OPEN can
never become empty before a goal state is expanded.

OCL Algorithms

OCL Completeness

Any OCL algorithm is complete on any solvable
problem with a finite state-space.

Proof Sketch

1. The candidate path lemma ensures that OPEN can
never become empty before a goal state is expanded.

2. There are a finite number of paths to any node, so
every node can only be re-expanded a finite number of
times.

The A* Algorithm

 Best-first search using an evaluation function

Φ ∶ nodes → ℝஹ଴

def SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே Φ ݊ᇱ

 A* uses Φ ݊ = ݂ ݊ = ݃ ݊ + ℎ(݊)

2016-09-29

14

The A* Algorithm

def SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே g ݊ᇱ + ℎ(݊ᇱ)

1010 99

Start

1010 99

3

2

3

݂ A = ݃ A + ℎ A = 8 + 9 = 17

݂ A is an estimate of the cost of
the solution path through A

A

Heuristic Admissibility

 A*’s optimality relies on admissibility
– Ensures the heuristic never overestimates the cost to go

– “One-sided error”

Heuristic Admissibility

Heuristic ℎ is admissible if ℎ ݊ ≤ ℎ∗(݊) for all ݊.

Optimality of A*

Optimality of A*

If the heuristic being used is admissible, then any
solution found by A* will be optimal.

Optimality of A*

Optimality of A*

If the heuristic being used is admissible, then any
solution found by A* will be optimal.

Proof Sketch.

By contradiction, show that a goal state along a
suboptimal solution cannot be expanded before all the
nodes along the optimal solution path.

2016-09-29

15

Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search

Uniform-cost search will only find optimal solutions.

Optimality of Uniform-Cost Search

Optimality of Uniform-Cost Search

Uniform-cost search will only find optimal solutions.

Proof Sketch

Uniform-cost search is equivalent to A* using the
heuristic ℎ such that ℎ ݊ = 0 for all ݊.

Using the Heuristic to Prune

Avoiding Node Expansions

If the heuristic being used is admissible, then A* will
not expand any nodes for which ݂ ݊ > .∗ܥ

Using the Heuristic to Prune

Avoiding Node Expansions
If the heuristic being used is admissible, then A* will
not expand any nodes for which ݂ ݊ > .∗ܥ

Proof Sketch.
Before a goal is found, there will always be a node ݊′
from the optimal solution path on OPEN such that

݂ ݊′ = ݃ ݊′ + ℎ ݊′ = ݃∗ ݊′ + ℎ ݊′
 ≤ ݃∗ ݊ᇱ + ℎ∗ ݊ᇱ = ∗ܥ

2016-09-29

16

A* vs. Uniform-Cost Search

 Uniform-cost search will not expand any ݊ such that

݃ ݊ > ∗ܥ

 A* may be able to expand fewer unique states than
unif0rm-cost search due to heuristic pruning

 But what about re-expansions?

def OCL(ݏூ):
ܰܧܱܲ ← ூݏ , ܦܧܱܵܮܥ ← {},
݃ ூݏ = 0, ݐ݊݁ݎܽ݌ ூݏ = ∅
while ܱܲܰܧ ≠ {}:

p ← SelectNode(ܱܲܰܧ)
if ݌ is a goal, return path to ݌
for ܿ ∈ ܿℎ݈݅݀݊݁ݎ ݌ :

if ܿ ∉ ܰܧܱܲ ∪ :ܦܧܱܵܮܥ
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}

else if ݃ ܿ > ݃ ݌ + ߢ ,݌ ܿ :
݃ ܿ = ݃ ݌ + ߢ ,݌ ܿ
ݐ݊݁ݎܽ݌ ܿ = ݌
if ܿ ∈ :ܦܧܱܵܮܥ

ܰܧܱܲ ← ܰܧܱܲ ∪ {ܿ}
ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ − {ܿ}

ܰܧܱܲ ← ܰܧܱܲ − ݌ , ܦܧܱܵܮܥ ← ܦܧܱܵܮܥ ∪ {݌}
return No solution exists

Node Reopening

Heuristic Consistency

Heuristic Consistency

Heuristic ℎ is consistent if for any pair of node ݌ and
ܿ, where ܿ is a child of ݌, the following holds:

ℎ ݌ ≤ ℎ ܿ + ,݌)ߢ ܿ)

Heuristic Consistency

Heuristic Consistency

Heuristic ℎ is consistent if for any pair of node ݌ and
ܿ, where ܿ is a child of ݌, the following holds:

ℎ ݌ ≤ ℎ ܿ + ,݌)ߢ ܿ)

10 9
1

2016-09-29

17

Heuristic Consistency

Heuristic Consistency

Heuristic ℎ is consistent if for any pair of node ݌ and
ܿ, where ܿ is a child of ݌, the following holds:

ℎ ݌ ≤ ℎ ܿ + ,݌)ߢ ܿ)

10 8
1

Heuristic Consistency

 Consistency guarantees a heuristic version of the
triangle inequality:

ℎ ݌ ≤ ℎ ݀ + ߢ ,݌ ܿ + ,ܿ)ߢ ݀)

1010 99
1

66
3

Heuristic Consistency

Re-expansion Theorem

If the heuristic being used by A* is consistent, then A*
will never reopen a node.

Heuristic Consistency

Re-expansion Theorem

If the heuristic being used by A* is consistent, then A*
will never reopen a node.

or alternatively

If the heuristic being used by A* is consistent, then
whenever A* expands a node ݊, ݃ ݊ = ݃∗(݊)

2016-09-29

18

A* vs. Uniform-Cost Search

 A* will do at least as much pruning as UCS

 If the heuristic is consistent, no node will be
expanded more than once

 If the heuristic allows some pruning, A* should be
faster than UCS

The A* Algorithm

 Recall proof that A* is optimal

 Similar argument shows A* expands every node with
݂ ݊ < ∗ܥ where ܥ∗ is the optimal solution cost
– This is how it proves that the optimal solution has been

found

 Proving optimality of a found solution path can
make A* prohibitively expensive

Weighted A* (WA*)

 Weighted A* is also a best-first search algorithm

def SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே Φ ݊ᇱ

 WA* uses Φ ݊ = ௪݂ ݊ = ݃ ݊ + ݓ ⋅ ℎ(݊)
– The weight ݓ is an parameter where ݓ ≥ 1

Weighted A* (WA*)

௪݂ ݊ = ݃ ݊ + ݓ ⋅ ℎ(݊)

 The weight impacts the relative importance of the
ℎ-cost and the ݃-cost
– ℎ-cost dominates the evaluation for large ݓ
– WA* becomes greedier on ℎ as ݓ increases

2016-09-29

19

Weighted A* (WA*)

௪݂ ݊ = ݃ ݊ + ݓ ⋅ ℎ(݊)

ݓ = 2

1010

Start

1010

A

00

10

29 B

Goal

݂ A = 20
௪݂ A = 30

݂ B = 29
௪݂ B = 29

A* vs. WA*

S

G

S

G

Weighted A* Properties

Optimality

Weighted A* is not an optimal algorithm.

Completeness

Weighted A* is a complete algorithm.

Weighted A* Suboptimality

Bounded Suboptimality

If the heuristic being used is admissible, then any
solution found by WA* will cost no more than ݓ ⋅ .∗ܥ

2016-09-29

20

Weighted A* Suboptimality

Bounded Suboptimality

If the heuristic being used is admissible, then any
solution found by WA* will cost no more than ݓ ⋅ .∗ܥ

Proof Sketch.

This is ensured by the ௪݂ and the way nodes are
selected for expansion.

Greedy Best-First Search

 Greedy Best-First Search (GBFS) is WA*
“in the limit”
– Still a best-first search, but maximally greedy on ℎ

def SelectNode(ܱܲܰܧ):
return argmin ௡ᇲ∈ை௉ாே Φ ݊ᇱ

 WA* uses Φ ݊ = ୋ݂୆୊ୗ ݊ = ℎ(݊)
– Ignores the heuristic completely

 Also called Pure Heuristic Search

Greedy Best-First Search

 GBFS is commonly used in domain-independent
planners

 Usually faster than A* and low-weight WA*

 GBFS is complete but suboptimal
– No bound on suboptimality

Modern Optimal Search Research

 Low memory algorithms
– IDA*, RBFS, EPEA*, SMA*, …

 Better heuristics

 Pruning methods for transpositions
– Stubborn sets

 Bidirectional Search
– MM, SFBDS, …

2016-09-29

21

Suboptimal Search Research

 Non-uniform cost domains
– GBFS and WA* can struggle if action costs vary greatly

 Understanding impact of different decisions
– Re-expansions, tie-breaking, weight value

 Exploration in GBFS
– ߳-greedy, Type-based exploration, novelty-based pruning

Summary

 Hill-climbing as a simple way to use a heuristic

 Generalized UCS to the OCL algorithm framework
– Showed how Best-First Search fits into this framework

 Introduced A* as an OCL algorithm
– Considered several properties

 Considered WA* and GBFS as suboptimal
alternatives

