An Introduction to Heuristic
Search-Based Planning

Rick Valenzano and Sheila McIlraith

a
¥ TORONTO

Lecture Plan

* Planning as pathfinding in a graph
— Heuristic-based planning

» From Dijkstra’s to Uniform-Cost Search

= Heuristics from abstraction and relaxation

The A* Algorithm

U

UNIVERSITY OF
¥ TORONTO

Gov

Quick Survey
= A*?
= IDA*?
= Weighted A*?
= Greedy Best-First Search?
» Enforced Hill-Climbing?

» AL? EES?

@
UNIVERSITY OF
ﬁ TORONTO

Floortile from IPC 2011

i‘ UNIVERSITY OF
& TORONTO

2016-09-28

Floortile from IPC 2011

@

UNIVERSITY OF

& TORONTO

Floortile from IPC 2011

;E JNIVERSITY OF
® TORONTO

Floortile from IPC 2011

?‘ UNIVERSITY OF
® TORONTO

Floortile from IPC 2011

Move Action: MOVE-0-0-0-1
Pre: AT-0-0, WHITE-0-1
P Post: AT-0-1, not(AT-0-0)
¥ TORONTO

2016-09-28

Floortile from IPC 2011

Move Action: MOVE-0-0-0-1
Pre: AT-0-0, WHITE-0-1
Post: AT-0-1, not(AT-0-0)

@ UNIVERSITY OF

& TORONTO

Floortile from IPC 2011

Paint Action: PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,
2 WHITE-0-2, NEED-B-0-2
& TORONTO Post: BLACK-0-2, not(WHITE-0-2)

Floortile from IPC 2011

- E

Paint Action: PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,
- WHITE-0-2, NEED-B-0-2
& TORONTO Post: BLACK-0-2, not(WHITE-0-2)

Floortile from IPC 2011

- E

Load Action: LOAD-RED
Pre: LOADED-B
2 osvensiry or Post: LOADED-R, not(LOADED-B)
¥ TORONTO

2016-09-28

2016-09-28

Floortile from IPC 2011 Floortile from IPC 2011
Initial State Goal
AT-0-0 BLACK-0-2
LOADED-B BLACK-3-0
WHITE-0-0 BLACK-3-1
WHITE-0-1 RED-4-2
:ﬂ WHITE-0-2 BLACK-2-3
NEED-B-0-2 RED-3-5
Load Action: LOAD-RED
Pre: LOADED-B
B nversiry or Post: LOADED-R, not(LOADED-B) B NvERSITY OF
@ TORONTO & TORONTO
Floortile from IPC 2011 Floortile from IPC 2011
MOVE-0-0-1-0 LOAD-R : / $ \
[
MOVE-0-0-0-1
l / N\

1 |

@
UNIVERSITY OF UNIVERSITY OF
@ TORONTO ¥ TORONTO

2016-09-28

Graph Underlying Floortile Graph Underlying Floortile

% UNIVERSITY OF
® TORONTO

Action Costs Action Costs
MOVE-0-0-1-0 LOAD-R 10 seconds 30 seconds
MOVE-O-O-O-11 10 secondsl
Wi i M|
% UNIVERSITY OF ? UNIVERSITY OF
¥ TORONTO & TORONTO

Edge Weights

Planning as Graph-Search

= Can generate the underlying graph
= Use the goal test function to label goal nodes

= Use a standard graph-search algorithm

@
& TORONTO

@
UNIVERSITY OF
@ TORONTO

Dijkstra’s Search

L3
T UNIVERSITY OF
® TORONTO

2016-09-28

Dijkstra’s Search

Dijkstra’s Search

?‘ UNIVERSITY OF
® TORONTO

®
& TORONTO

Dijkstra’s Search

Expanding

L3
¥ TORONTO

&
%] UNIVERSITY OF
& TORONTO

Dijkstra’s Search

2016-09-28

Dijkstra’s Search

Expanding

Q‘ ERSITY OF
© TORONTO

Dijkstra’s Search

Expanding

&
& TORONTO

Dijkstra’s Search

Expanding

4
UNIVERSITY OF
Q TORONTO

Dijkstra’s Search

2016-09-28

Dijkstra’s Search

Dijkstra’s Search

@
& TORONTO

4
Start
3
0
1
?‘ UNIVERSITY OF
a? TORONTO
Dijkstra’s Search
4
Start

L3
¥ TORONTO

Dijkstra’s Search

UNIVERSITY OF
> TORONTO

@

2016-09-28

Dijkstra’s Search

% ERSITY OF
© TORONTO

Dijkstra’s Search

Dijkstra’s Search

@
UNIVERSITY OF
@ TORONTO

& INIVERSITY OF
& TORONTO
Dijkstra’s Search
00
4
|
4
Start 3

RONG

&
T UNIVERSITY OF
& TORONTO

2016-09-28

10

Dijkstra’s Search

R\
1

Start 3

4

RONG

Dijkstra’s Search

o0
oo PO
1
OO}
4
3 8

Start

© 0

®
& TORONTO

?‘ UNIVERSITY OF
& TORONTO
Dijkstra’s Search
Start
0
m UNIVERSITY OF
ﬁ TORONTO

Start
0
& TORONTO

2016-09-28

11

Start
0
Q‘ UNIVERSITY OF
& TORONTO
Dijkstra’s Search
4 5 1 1GGoal
1
O
4
Start 3 8
1
0
1 1 2 Goal 1
OO0 ;
‘% INIVERSITY OF
¥ TORONTO

Dijkstra’s Search
4 5 11ﬂGoal
1
(s
4
Start 3 8
0
1 1 2 Goal 1
O G
¥ TORONTO
Dijkstra’s Search
4 5 11<|DG03I
1
s
4
Start 3 8
3 6 L7 (6
1
0 7
1 1 2 Goal 1
O GO
¥ TORONTO

12

2016-09-28

Dijkstra’s Search

4 5 11@Goal
RO
4
3

Start 8
1
0
1 1 2 Goal 1
OO ;
% UNIVERSITY OF
& TORONTO

Dijkstra’s Search

* Now have a shortest path to every vertex in graph
— Can iterate through goals and return lowest-cost solution

= Dijkstra’s search will look at O(|V|) vertices
— So planning can be done in poly-time, right?

@
& TORONTO

Dijkstra’s Search

= Dijkstra’s search is polynomial in | V|
— But not polynomial in the given problem representation

= Consider floortile on an N x N grid with K locations
that need to be painted
— Robot can be in either LOADED-B or LOADED-R
— Robot can be in any of N x N locations
— Any combination of the Klocations can be painted
— 0(2-N-N - 2K) states

L3

UNIVERSITY OF

& TORONTO

Uniform Cost Search

Two changes to Dijkstra’s Algorithm

1. Stop after a goal node is first expanded.

UNIVERSITY OF

&
& TORONTO

2016-09-28

13

Uniform Cost Search1

4 5
1
ONOR

4
3 8

Start

% ERSITY OF
© TORONTO

Dijkstra’s Search

Uniform Cost Search

» Two changes to Dijkstra’s Algorithm

Stop after a goal node is first expanded.

=

2. Use implicit action definition to generate the graph
on-the-fly.

@
& TORONTO

@
UNIVERSITY OF
@ TORONTO

Uniform Cost Search

Start

07
Expanding

L3
T UNIVERSITY OF
® TORONTO

2016-09-28

14

Uniform Cost Search
[
4
Start 3
O -
0
1 1

?‘ UNIVERSITY OF
® TORONTO

Uniform Cost Search

[
4
Start 3

O -
0
1 1

»0O

@
& TORONTO

Uniform Cost Search
(-

4
Start 3
O -

0
1 1

ON -

L3
¥ TORONTO

Uniform Cost Search

4
lhudren(/l) = {B,C,D}
4 parent pointer
Start 3

@ 3 a(/ g-cost
: l
1 1
K(A, D) @T)é OPEN List

CLOSED List

%] UNIVERSITY OF
¥ TORONTO

2016-09-28

15

def UniformCostSearch(s;):
OPEN « {s;},CLOSED « {3},
g(s;) = 0,parent(s;) = @
whlle OPEN # {}:
P < argmmis EOPEN}g(S)
if p is a goal, return path to p
for c € children(p):
if c ¢ OPEN U CLOSED:
g() = eg(p) +x(p,0)
parent c)
OPEN « OPEN U {c}
else ifg(c) >g) +x,c):

g(c —(q(p) + k(p,c)
parent(c)

if c € CLOSED:
OPEN « OPEN U {c}

CLOSED « CLOSED — {c}
OPEN « OPEN — {p}, CLOSED « CLOSED U {p}

return No solution exists

OPEN CLOSED « 1 1 _eve 1.
a(s) :o:{;’(%rem(s,) 5% Initialize Search

Get node from OPEN

while OPEN # {}:
p < argmmis EOPEN}g(S)
if p is a goal, return path to p

Generate and handle

children

for c € children(p):
if c € OPEN U CLOSED:
9@ = (q(p) +k(p,c)
parent c)
OPEN « OPEN U {c}

2016-09-28

16

2016-09-28

Close expanded

Generate and handle
node

children

for c € children(p):

else ifg(c) >g) +x,c):
g(c —(q(p) +k(p,c)
parent(c)
if c € CLOSED:
OPEN « OPEN U {c}

CLOSED « CLOSED — {c}
OPEN « OPEN — {p},CLOSED « CLOSED U {p}

Uniform Cost Search

Repeat

while OPEN # {}: . . .
p « argmin {S copem)9(s") UCS is completely exhaustive and brute-force

if p is a goal, return path to p

= Makes it prohibitively expensive

Depth Nodes Time Memory

2 1100 11 seconds 1 megabyte

4 111,100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 10° 31 hours 1 terabytes

10 10! 129 days 101 terabytes

12 10'* 35 years 10 petabytes

14 10'% 3,523 years 1 exabyte
Figure3.11 Time and memory requirements for breadth-first search. The numbers shown
assume branching factor b = 10; 10,000 nodes/second; 1000 bytes/node.

UNIVERSITY OF

&
return No solution exists % TORONTO

17

Extending Candidate Paths

©G .0

Start
3
0
% UNIVERSITY OF Q
ﬁ TORONTO

Extending Candidate Paths

0. 0
s 6@

@
& TORONTO

Extending Candidate Paths
©<®
: ©
Start
® o

@
UNIVERSITY OF
@ TORONTO

Extending Candidate Paths

Start
0
1 1 2
? UNIVERSITY OF
& TORONTO

2016-09-28

18

Uniform Cost Search

= Jteratively extending some candidate path

= Uses the g-cost as the basis of this selection
— Only info that uniform cost search has about a state
— Only “uses” the transition function

= But each vertex represents a state

— There is more information that can be used

?‘ UNIVERSITY OF
® TORONTO

Uniform Cost Search

= Jteratively extending some candidate path

= Uses the g-cost as the basis of this selection
— Only info that uniform cost search has about a state
— Only “uses” the transition function

= But each vertex represents a state

— There is more information that can be used

UNIVERSITY OF

®
& TORONTO

Graph Underlying Floortile

L3

& TORONTO

UNIVERSITY OF

States Corresponding to Vertices

N

2
¥

UNIVERSITY OF

TORONTO

2016-09-28

19

2016-09-28
Heuristic Guidance

Pathfinding
= A heuristic function h is a function from states*
to the non-negative real values

— Estimate the cost to reach the goal from the state

— Other algorithms use such functions to change how they
determine the order for extending candidate paths

= Often based on domain knowledge or domain
simplification
* Or sometimes candidate paths to real values
L B vERSITY oF
¥ TORONTO & TORONTO

Pathfinding

Pathfinding

®

zx:g:
L3
E UNIVERSITY OF

TORONTO

@
T UNIVERSITY OF

TORONTO

20

Floortile from IPC 2011

= What are possible heuristics or simplications here?

@
UNIVERSITY OF

TORONTO

Automatic Heuristic Generation
= Can use domain knowledge

= Many automatic heuristic generation techniques
— Delete relaxation
— Pattern databases
— Landmark-based heuristics
— Merge-and-Shrink
— Counterexample guided abstraction refinement heuristics

®
& TORONTO

Automatic Heuristic Generation
= Can use domain knowledge

= Many automatic heuristic generation techniques
— Delete relaxation
— Pattern databases
— Landmark-based heuristics
— Merge-and-Shrink
— Counterexample guided abstraction refinement heuristics

UNIVERSITY OF

& TORONTO

Delete Relaxation

= Can only achieve new facts, never delete them

Move Action: MOVE-0-0-0-1
B o Pre: AT-0-0, WHITE-0-1
& TORONTO Post: AT-0-1, not(AT-0-0)

2016-09-28

21

Delete Relaxation

= Can only achieve new facts, never delete them

Move Action:

MOVE-0-0-0-1

& TORONTO

Pre: AT-0-0, WHITE-0-1
Post: AT-0-1, ret{-AT-0-0)

Delete Relaxation

= Can only achieve new facts, never delete them

PAINT-B-0-1-0-2

Paint Action:

"'\ UNIVERSITY OF

& TORONTO

Pre: AT-0-1, LOADED-B,

WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, not(WHITE-0-2)

Delete Relaxation

= Can only achieve new facts, never delete them

Move Action:

MOVE-0-0-0-1

FE— Pre: AT-0-0, WHITE-0-1
& TORONTO

Post: AT-0-1, rot{AT-0-0)

Delete Relaxation

= Can only achieve new facts, never delete them

PAINT-B-0-1-0-2

Paint Action:

UNIVERSITY OF

&
& TORONTO

Pre: AT-0-1, LOADED-B,
WHITE-0-2, NEED-B-0-2

Post: BLACK-0-2. nottWHITE-O-2) |

22

2016-09-28

Delete Relaxation

= Can only achieve new facts, never delete them

Paint Action: PAINT-B-0-1-0-2
- Pre: AT-0-1, LOADED-B,
IO WHITE-0-2, NEED-B-0-2

Post: BLACK-0-2, nott WHITE-0-2) |

Delete Relaxation

= Can only achieve new facts, never delete them

Load Action: LOAD-RED
% UNIVERSITY OF Pre: LOADED_B
& TORONTO Post: LOADED-R, not(LOADED-B)

Delete Relaxation

= Can only achieve new facts, never delete them

Load Action: LOAD-RED
% UNIVERSITY OF Pre: LOADED-B
¥ TORONTO Post: LOADED-R, net{LOADED-B)

Delete Relaxation

= Can only achieve new facts, never delete them

Load Action: LOAD-RED
% UNIVERSITY OF Pre: LOADED_B
& TORONTO Post: LOADED-R, ret{tOADED-B)

2016-09-28

23

Delete Relaxation

= Still NP-complete to optimally solve delete relaxed
problems
— Better than PSPACE-hard, but still ...

= Do have polynomial ways to solve them suboptimally
or come up with a lower bound

% ERSITY OF
© TORONTO

Summary

= Can solve planning using graph search
— Generate graph and use Dijkstra’s search

= Can incrementally generate the graph and stop early
— Uniform cost search is this adjustment

» Uniform cost search is only using transition function
— Ignoring state information

= Heuristic functions use state information to generate
an estimate of the cost to a goal

o
4

UNIVERSITY OF

TORONTO

2016-09-28

24

