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Lecture Plan

= Planning as pathfinding in a graph
— Heuristic-based planning

* From Dijkstra’s to Uniform-Cost Search

= Heuristics from abstraction and relaxation

= The A* Algorithm
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Quick Survey
= A¥?
= IDA*?
= Weighted A*?
= Greedy Best-First Search?
= Enforced Hill-Climbing?

= A%? EES?
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Floortile from IPC 2011
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Floortile from IPC 2011




Floortile from IPC 2011

Move Action: MOVE-0-0-0-1
Pre: AT-0-0, WHITE-0-1
Post: AT-0-1, not( AT-0-0 )
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Floortile from IPC 2011

Move Action: MOVE-0-0-0-1
Pre: AT-0-0, WHITE-0-1
® Post: AT-0-1, not( AT-0-0 )



Floortile from IPC 2011

Paint Action: PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,
& WHITE-0-2, NEED-B-0-2
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Floortile from IPC 2011

Paint Action: PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,
| WHITE-0-2, NEED-B-0-2
% TORONTO Post: BLACK-0-2, not(WHITE-0-2)
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Floortile from IPC 2011

Load Action: LOAD-RED
Pre: LOADED-B
B niveRsITY oF Post: LOADED-R, not(LOADED-B)
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Floortile from IPC 2011

LLoad Action:
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LOAD-RED

Pre: LOADED-B
Post: LOADED-R, not(LOADED-B)



Floortile from IPC 2011

Initial State Goal
AT-0-0 BLACK-0-2
LOADED-B BLACK-3-0
WHITE-0-0 BLACK-3-1
WHITE-0-1 RED-4-2
WHITE-0-2 BLACK-2-3
NEED-B-0-2 RED-3-5
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Floortile from IPC 2011

MOVE-0-0-1-0
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Graph Underlying Floortile
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Graph Underlying Floortile
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Action Costs
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Action Costs

10 seconds 30 seconds

10 secondsl
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Edge Weights
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Planning as Graph-Search

= Can generate the underlying graph

= Use the goal test function to label goal nodes

= Use a standard graph-search algorithm
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Dijkstra’s Search
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Dijkstra’s Search
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Expanding
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Dijkstra’s Search
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Expanding
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search
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Dijkstra’s Search

= Now have a shortest path to every vertex in graph
— Can iterate through goals and return lowest-cost solution

= Dijkstra’s search will look at O(|V|) vertices
— So planning can be done in poly-time, right?
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Dijkstra’s Search

= Dijkstra’s search is polynomial in | V|
— But not polynomial in the given problem representation

= Consider floortile on an N x N grid with K locations
that need to be painted
— Robot can be in either LOADED-B or LOADED-R
— Robot can be in any of N x N locations

— Any combination of the K locations can be painted
— 0(2-N - N -2%) states
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Uniform Cost Search

= Two changes to Dijkstra’s Algorithm

1. Stop after a goal node is first expanded.
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Uniform Cost Search
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Uniform Cost Search

= Two changes to Dijkstra’s Algorithm
1. Stop after a goal node is first expanded.

2. Use implicit action definition to generate the graph
on-the-fly.
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Expanding
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Uniform Cost Search
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Uniform Cost Search

3 vf TORONTO



Uniform Cost Search
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Uniform Cost Search
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Uniform Cost Search
4

children(A) = {B,C, D}

parent pointer
Start

@ e(/ g-cost
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def UniformCostSearch(s;):

OPEN « {s;},CLOSED < {},
g(s;) = 0, parent(s;) = 0
while OPEN # {}: ’
P < argmlnﬁs'EOPEN}g(S )
if p is a goal, return path to p

for c € children(p):
if c ¢ OPEN U CLOSED:

g(c) = g(p) +k(p,c)
parent(c) =p

OPEN « OPEN U {c}
elseif g(c) > g(p) + k(p, c):

g(c) = g(p) +x(p,c)
parent(c) =p

if c € CLOSED:
OPEN « OPEN U {c}
CLOSED « CLOSED — {c}
OPEN <« OPEN — {p}, CLOSED « CLOSED U {p}
return No solution exists



OPEN « {s;}, CLOSED « {}, e
g(s,) = 0, parent(s;) = ¢ ) Initialize Search



Get node from OPEN
while OPEN # {}:
p <« argmlnﬂS/EOPEN}g(s’)
if p is a goal, return path to p



Generate and handle
children

for c € children(p):
if c ¢ OPEN U CLOSED:

g(c) =gp) +x(p,c)
parent(c) =p

OPEN « OPEN U {c}



Generate and handle
children

for c € children(p):

elseif g(c) > g(p) + k(p, c):
g(c) = g(p) + x(p,c)
parent(c) =p

if c € CLOSED:
OPEN <« OPEN U {c}
CLOSED « CLOSED — {c}



Close expanded
node

OPEN < OPEN — {p},CLOSED < CLOSED U {p}



Repeat
while OPEN =+ {}:
p < .argminﬂs’E()PEN}g (s’)
if p is a goal, return path to p

return No solution exists



Uniform Cost Search

= UCS is completely exhaustive and brute-force

= Makes it prohibitively expensive

Depth Nodes Time Memory
2 1100 11 seconds | megabyte
4 111,100 11 seconds 106 megabytes
6 107 19 minutes 10 gigabytes
| 8 10° 31 hours | terabytes
! 10 10 129 days 101 terabytes
12 1013 35 years 10 petabytes
14 10"° 3,523 years 1 exabyte
Figure 3.11  Time and memory requirements for breadth-first search. The numbers shown |
assume branching factor b = 10; 10,000 nodes/second; 1000 bytes/node.
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Extending Candidate Paltlhs
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Extendlng Candidate Paths
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Extending Candidate Paths
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Extending Candidate Paths
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Uniform Cost Search

= Jteratively extending some candidate path

= Uses the g-cost as the basis of this selection
— Only info that uniform cost search has about a state
— Only “uses” the transition function

= But each vertex represents a state
— There is more information that can be used
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Uniform Cost Search

= Jteratively extending some candidate path

= Uses the g-cost as the basis of this selection
— Only info that uniform cost search has about a state
— Only “uses” the transition function

= But each vertex represents a state
— There is more information that can be used
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Graph Underlying Floortile
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States Corresponding to Vertices
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Heuristic Guidance

= A heuristic function h is a function from states*
to the non-negative real values

— Estimate the cost to reach the goal from the state

— Other algorithms use such functions to change how they
determine the order for extending candidate paths

= Often based on domain knowledge or domain
simplification

* Or sometimes candidate paths to real values
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Pathfinding
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Pathfinding
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Pathfinding
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Floortile from IPC 2011

= What are possible heuristics or simplications here?
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Automatic Heuristic Generation

= Can use domain knowledge

= Many automatic heuristic generation techniques
— Delete relaxation
— Pattern databases
— Landmark-based heuristics
— Merge-and-Shrink
— Counterexample guided abstraction refinement heuristics
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Automatic Heuristic Generation

= Can use domain knowledge

= Many automatic heuristic generation techniques
— Delete relaxation
— Pattern databases
— Landmark-based heuristics
— Merge-and-Shrink
— Counterexample guided abstraction refinement heuristics
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Delete Relaxation

= Can only achieve new facts, never delete them

Move Action: MOVE-0-0-0-1
@ Pre: AT-0-0, WHITE-0-1
¥ TORONTO Post: AT-0-1, not( AT-0-0 )



Delete Relaxation

= Can only achieve new facts, never delete them

Move Action: MOVE-0-0-0-1
UNIVERSITY OF Pre AT'O'O, WHITE'O'1

¥ TORONTO Post: AT-0-1, aet-AT-0-0)
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Delete Relaxation

= Can only achieve new facts, never delete them

Move Action: MOVE-0-0-0-1
& Pre: AT-0-0, WHITE-0-1
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Delete Relaxation

= Can only ac]

nieve new facts, never delete them

Paint Action:
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PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,
WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, not(WHITE-0-2)



Delete Relaxation

= Can only ac]

nieve new facts, never delete them

Paint Action:
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Pre: AT-0-1, LOADED-B,
WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, retfAMHHE-0-2)



Delete Relaxation

= Can only achieve new facts, never delete them

Paint Action: PAINT-B-0-1-0-2

Pre: AT-0-1, LOADED-B,
[ or WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, protfAHITE-0-2)




Delete Relaxation

= Can only achieve new facts, never delete them

Load Action: LOAD-RED
& Pre: LOADED-B

¥ TORONTO Post: LOADED-R, not(LOADED-B)



Delete Relaxation

= Can only achieve new facts, never delete them

Load Action: LOAD-RED
& Pre: LOADED-B
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Delete Relaxation

= Can only achieve new facts, never delete them

Load Action: LOAD-RED
& Pre: LOADED-B
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Delete Relaxation

= Still NP-complete to optimally solve delete relaxed
problems
— Better than PSPACE-hard, but still ...

= Do have polynomial ways to solve them suboptimally
or come up with a lower bound
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Summary

= Can solve planning using graph search
— Generate graph and use Dijkstra’s search

= Can incrementally generate the graph and stop early
— Uniform cost search is this adjustment

= Uniform cost search is only using transition function
— Ignoring state information

= Heuristic functions use state information to generate
an estimate of the cost to a goal
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