
An Introduction to Heuristic
Search-Based Planning

Rick Valenzano and Sheila McIlraith

Lecture Plan

 Planning as pathfinding in a graph
– Heuristic-based planning

 From Dijkstra’s to Uniform-Cost Search

 Heuristics from abstraction and relaxation

 The A* Algorithm

Quick Survey

 A*?

 IDA*?

 Weighted A*?

 Greedy Best-First Search?

 Enforced Hill-Climbing?

 ? EES?

Floortile from IPC 2011

Floortile from IPC 2011

bb

b

b

b

Floortile from IPC 2011

bb

b

b

b

Floortile from IPC 2011

Floortile from IPC 2011

Move Action: MOVE-0-0-0-1
Pre: AT-0-0, WHITE-0-1
Post: AT-0-1, not(AT-0-0)

Floortile from IPC 2011

Move Action: MOVE-0-0-0-1
Pre: AT-0-0, WHITE-0-1
Post: AT-0-1, not(AT-0-0)

Floortile from IPC 2011

Paint Action: PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,

WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, not(WHITE-0-2)

Floortile from IPC 2011

Paint Action: PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,

WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, not(WHITE-0-2)

Floortile from IPC 2011

Load Action: LOAD-RED

Pre: LOADED-B
Post: LOADED-R, not(LOADED-B)

Floortile from IPC 2011

Load Action: LOAD-RED

Pre: LOADED-B
Post: LOADED-R, not(LOADED-B)

Floortile from IPC 2011

Initial State

AT-0-0

LOADED-B

WHITE-0-0

WHITE-0-1

WHITE-0-2

NEED-B-0-2

…

Goal

BLACK-0-2

BLACK-3-0

BLACK-3-1

RED-4-2

BLACK-2-3

RED-3-5

…

Floortile from IPC 2011

MOVE-0-0-1-0

MOVE-0-0-0-1

LOAD-R

Floortile from IPC 2011

Graph Underlying Floortile

Graph Underlying Floortile

Action Costs

MOVE-0-0-1-0

MOVE-0-0-0-1

LOAD-R

Action Costs

10 seconds

10 seconds

30 seconds

Edge Weights

10
10 30

10

10 10
30

10

10

10

30

60

Planning as Graph-Search

 Can generate the underlying graph

 Use the goal test function to label goal nodes

 Use a standard graph-search algorithm

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1Goal

H
5

Goal

Start

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Expanding

Goal

H
5

Goal

Start

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

Expanding

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

Expanding

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

Expanding

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

Expanding

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

Expanding

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Dijkstra’s Search

 Now have a shortest path to every vertex in graph
– Can iterate through goals and return lowest-cost solution

 Dijkstra’s search will look at O(|V|) vertices
– So planning can be done in poly-time, right?

Dijkstra’s Search

 Dijkstra’s search is polynomial in |V|
– But not polynomial in the given problem representation

 Consider floortile on an N x N grid with K locations
that need to be painted
– Robot can be in either LOADED-B or LOADED-R

– Robot can be in any of N x N locations

– Any combination of the K locations can be painted

– ௄ states

Uniform Cost Search

 Two changes to Dijkstra’s Algorithm

1. Stop after a goal node is first expanded.

Uniform Cost Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Start

Goal

H
5

Goal

1

Uniform Cost Search

 Two changes to Dijkstra’s Algorithm

1. Stop after a goal node is first expanded.

2. Use implicit action definition to generate the graph
on-the-fly.

Dijkstra’s Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Expanding

Goal

H
5

Goal

Start

1

Uniform Cost Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1

Expanding

Goal

H
5

Goal

Start

Uniform Cost Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1Goal

H
5

Goal

Start

Uniform Cost Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1Goal

H
5

Goal

Start

Uniform Cost Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1Goal

H
5

Goal

Start

Uniform Cost Search

A

D

C

B E

G

I

J

KF

3

1

8

1

4

1

1

1 4

1Goal

H
5

Goal

Start

OPEN List
CLOSED List

g-cost

parent pointer

while :
ᇲ

if is a goal, return path to
for

if :

else if :

if :

return No solution exists

while :
ᇲ

if is a goal, return path to
for

if :

else if :

if :

return No solution exists

Initialize Search

while :
ᇲ

if is a goal, return path to
for

if :

else if :

if :

return No solution exists

Get node from OPEN

while :
ᇲ

if is a goal, return path to
for

if :

else if :

if :

return No solution exists

Generate and handle
children

while :
ᇲ

if is a goal, return path to
for

if :

else if :

if :

return No solution exists

Generate and handle
children

while :
ᇲ

if is a goal, return path to
for

if :

else if :

if :

return No solution exists

Close expanded
node

while :
ᇲ

if is a goal, return path to
for

if :

else if :

if :

return No solution exists

Repeat

Uniform Cost Search

 UCS is completely exhaustive and brute-force

 Makes it prohibitively expensive

Extending Candidate Paths

A

D

C

B E

G

I

F

3

1

8

1

4

1

1

1
Start

H
5

J10

Extending Candidate Paths

A

D

C

B E

G

I

F

3

1

8

1

4

1

1

1
Start

H
5

J10

Extending Candidate Paths

A

D

C

B E

G

I

F

3

1

8

1

4

1

1

1
Start

H
5

J10

Extending Candidate Paths

A

D

C

B E

G

I

F

3

1

8

1

4

1

1

1
Start

H
5

J10

Uniform Cost Search

 Iteratively extending some candidate path

 Uses the g-cost as the basis of this selection
– Only info that uniform cost search has about a state

– Only “uses” the transition function

 But each vertex represents a state
– There is more information that can be used

Uniform Cost Search

 Iteratively extending some candidate path

 Uses the g-cost as the basis of this selection
– Only info that uniform cost search has about a state

– Only “uses” the transition function

 But each vertex represents a state
– There is more information that can be used

Graph Underlying Floortile

States Corresponding to Vertices

Heuristic Guidance

 A heuristic function is a function from states*
to the non-negative real values
– Estimate the cost to reach the goal from the state

– Other algorithms use such functions to change how they
determine the order for extending candidate paths

 Often based on domain knowledge or domain
simplification

* Or sometimes candidate paths to real values

Pathfinding

G

Pathfinding

G

Pathfinding

G

Floortile from IPC 2011

 What are possible heuristics or simplications here?

Automatic Heuristic Generation

 Can use domain knowledge

 Many automatic heuristic generation techniques
– Delete relaxation

– Pattern databases

– Landmark-based heuristics

– Merge-and-Shrink

– Counterexample guided abstraction refinement heuristics

– …

Automatic Heuristic Generation

 Can use domain knowledge

 Many automatic heuristic generation techniques
– Delete relaxation

– Pattern databases

– Landmark-based heuristics

– Merge-and-Shrink

– Counterexample guided abstraction refinement heuristics

– …

Delete Relaxation

 Can only achieve new facts, never delete them

Move Action: MOVE-0-0-0-1
Pre: AT-0-0, WHITE-0-1
Post: AT-0-1, not(AT-0-0)

Delete Relaxation

 Can only achieve new facts, never delete them

Move Action: MOVE-0-0-0-1
Pre: AT-0-0, WHITE-0-1
Post: AT-0-1, not(AT-0-0)

Delete Relaxation

 Can only achieve new facts, never delete them

Move Action: MOVE-0-0-0-1
Pre: AT-0-0, WHITE-0-1
Post: AT-0-1, not(AT-0-0)

Delete Relaxation

 Can only achieve new facts, never delete them

Paint Action: PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,

WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, not(WHITE-0-2)

Delete Relaxation

 Can only achieve new facts, never delete them

Paint Action: PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,

WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, not(WHITE-0-2)

Delete Relaxation

 Can only achieve new facts, never delete them

Paint Action: PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,

WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, not(WHITE-0-2)

Delete Relaxation

 Can only achieve new facts, never delete them

Load Action: LOAD-RED

Pre: LOADED-B
Post: LOADED-R, not(LOADED-B)

Delete Relaxation

 Can only achieve new facts, never delete them

Load Action: LOAD-RED

Pre: LOADED-B
Post: LOADED-R, not(LOADED-B)

Delete Relaxation

 Can only achieve new facts, never delete them

Load Action: LOAD-RED

Pre: LOADED-B
Post: LOADED-R, not(LOADED-B)

Delete Relaxation

 Still NP-complete to optimally solve delete relaxed
problems
– Better than PSPACE-hard, but still …

 Do have polynomial ways to solve them suboptimally
or come up with a lower bound

Summary

 Can solve planning using graph search
– Generate graph and use Dijkstra’s search

 Can incrementally generate the graph and stop early
– Uniform cost search is this adjustment

 Uniform cost search is only using transition function
– Ignoring state information

 Heuristic functions use state information to generate
an estimate of the cost to a goal

