An Introduction to Heuristic
Search-Based Planning

Rick Valenzano and Sheila Mcllraith

ey
AT

UNIVERSITY OF

,, TORONTO

Lecture Plan

= Planning as pathfinding in a graph
— Heuristic-based planning

* From Dijkstra’s to Uniform-Cost Search

= Heuristics from abstraction and relaxation

= The A* Algorithm

oo
(@] UNIVERSITY OF
L

¥ TORONTO

Quick Survey
= A¥?
= IDA*?
= Weighted A*?
= Greedy Best-First Search?
= Enforced Hill-Climbing?

= A%? EES?

UNIVERSITY OF

K2
Bs 88
\:Z’

& TORONTO

Floortile from IPC 2011

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

% TORONTO

24

Floortile from IPC 2011

Floortile from IPC 2011

(g] UNIVERSITY OF

¥ TORONTO

Floortile from IPC 2011

Floortile from IPC 2011

Move Action: MOVE-0-0-0-1
Pre: AT-0-0, WHITE-0-1
Post: AT-0-1, not(AT-0-0)

%

UNIVERSITY OF

¥ TORONTO

&

X

Floortile from IPC 2011

Move Action: MOVE-0-0-0-1
Pre: AT-0-0, WHITE-0-1
® Post: AT-0-1, not(AT-0-0)

Floortile from IPC 2011

Paint Action: PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,
& WHITE-0-2, NEED-B-0-2

I
g UNIVERSITY OF

¥ TORONTO Post: BLACK-0-2, not(WHITE-0-2)

Floortile from IPC 2011

Paint Action: PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,
| WHITE-0-2, NEED-B-0-2
% TORONTO Post: BLACK-0-2, not(WHITE-0-2)

24

Floortile from IPC 2011

Load Action: LOAD-RED
Pre: LOADED-B
B niveRsITY oF Post: LOADED-R, not(LOADED-B)

& TORONTO

Floortile from IPC 2011

LLoad Action:

%

UNIVERSITY OF

¥ TORONTO

3

£

LOAD-RED

Pre: LOADED-B
Post: LOADED-R, not(LOADED-B)

Floortile from IPC 2011

Initial State Goal
AT-0-0 BLACK-0-2
LOADED-B BLACK-3-0
WHITE-0-0 BLACK-3-1
WHITE-0-1 RED-4-2
WHITE-0-2 BLACK-2-3
NEED-B-0-2 RED-3-5

(&%] UNIVERSITY OF

® TORONTO

Floortile from IPC 2011

MOVE-0-0-1-0

&

1
IIIIIIIIIIII

TORONTO

B @8

MOVE-O-O-O-1l

LOAD-R

Floortile from IPC 2011

Graph Underlying Floortile

o OO0
o) e
‘0‘0'

¥ TORONTO

Graph Underlying Floortile

o OO0
ol e
‘0‘0'

IIIIIIIIII

¥ TORONLO

Action Costs

MOVE-0-0-1-0 LOADR
MOVE-O-O-O-'Il
L versiry or
TORONTO

£

Action Costs

10 seconds 30 seconds

10 secondsl

UNIVERSITY OF

¥ TORONTO

Edge Weights

10 30
oA) (O
0 10
() o
60

g | UNIVERSITY Q¢

F TORONAO

s

Planning as Graph-Search

= Can generate the underlying graph

= Use the goal test function to label goal nodes

= Use a standard graph-search algorithm

[& | UNIVERSITY OF
B

¥ TORONTO

N'@-

it

UNIVERSIT

Y TO RONTO

Dijkstra’s Search

Dijkstra’s Search

“@®1 UNIVERSITY OF

¥ TORONTO

Dijkstra’s Search

%] UNIVERSITY OF
an 8

¥ TORONTO

Expanding

('_] UNIVERSITY OF

X *9 TORONTO

Dijkstra’s Search

o0 > Goal
1
1 5

Expanding

UNIVERSITY OF

Y TORONTO

i€Peid

Dijkstra’s Search

- «© Goal
1
5

Dijkstra’s Search

&

‘@ UNIVERSITY OF
Bs 88

& TORONTO

Dijkstra’s Search

OO Goal
5
Start 00 8 e °
3 CO 1 4 O
O

00 00 Goal

Expanding Q G 0 °

UNIVERSITY OF

; w TORONTO

Dijkstra’s Search

UNIVERSITY OF

TORONTO

xa
B8 B8

Dijkstra’s Search

OO Goal
5
OO 1 4 00
(1
Goal
50

%] UNIVERSITY OF

¥ TORONTO

Dijkstra’s Search

OO Goal
5
oo 1 4 0
(1
Goal
50

®

¥ UNIVERSITY OF

% TORONTO

Dijkstra’s Search
0.0)
. @ Goal
1
Yo
oo 1 4 00
(s
1 1 0 Goal
,QT)G o °

¥ TORONTO

Dijkstra’s Search
0.0)
@ Goal
S
oo 1 4 0
(s

Goal

&

@ UNIVERSITY OF

® TORONTO

Dijkstra’s Search
0.0)
@ Goal
S
oo 1 4 0
(s

Goal

%-:a] UNIVERSITY OF

¥ TORONTO

Dijkstra’s Search

OO Goal
5
oo 1 4 0
(1
Goal
50

¥ UNIVERSITY OF
Bs 88

¥ TORONTO

Dijkstra’s Search

OO Goal
5
00 H 1 4 00
{0
Goal
0

@ UNIVERSITY OF
B o

¥ TORONTO

Dijkstra’s Search

X *f TORONTO

Dijkstra’s Search

¥] UNIVERSITY OF

&) TORONTO

L
& .?/?0
i

G

Dijkstra’s Search

"¢ | UNIVERSITY OF

» TORONTO

Ba 8

Dijkstra’s Search

3 vf TORONTO

Ka
88 B8
.

IIIIIIIIIIII

TORONTO

Dijkstra’s Search

Dijkstra’s Search

¥ TORONTO

Dijkstra’s Search

IIIIIIIIIIII

TORONTO

YL

Dijkstra’s Search

! «f TORONTO

IIIIIIIIIIII

w TORONTO

4 5
1
(&~

Dijkstra’s Search

E 1GGoal
5

Dijkstra’s Search
4 5
1

(&~

4
3 8

(&)
0

1 1GGoal
5

Dijkstra’s Search
4 5
1

(-

4
3 8

O
0

IIIIIIIIIIII

2
¥ TORONTO

- 1@Goal
5

Dijkstra’s Search
4 5
1

(&~

4
3 8

(&)
0

1 1@Goal
5

Dijkstra’s Search

= Now have a shortest path to every vertex in graph
— Can iterate through goals and return lowest-cost solution

= Dijkstra’s search will look at O(|V|) vertices
— So planning can be done in poly-time, right?

&

@ UNIVERSITY OF
a8 8

¥ TORONTO

Dijkstra’s Search

= Dijkstra’s search is polynomial in | V|
— But not polynomial in the given problem representation

= Consider floortile on an N x N grid with K locations
that need to be painted
— Robot can be in either LOADED-B or LOADED-R
— Robot can be in any of N x N locations

— Any combination of the K locations can be painted
— 0(2-N - N -2%) states

K2 UNIVERSITY OF
88 A

¥ TORONTO

Uniform Cost Search

= Two changes to Dijkstra’s Algorithm

1. Stop after a goal node is first expanded.

&

¥ UNIVERSITY OF

¥ TORONTO

Uniform Cost Search

.,*"f TORONTO

Uniform Cost Search

= Two changes to Dijkstra’s Algorithm
1. Stop after a goal node is first expanded.

2. Use implicit action definition to generate the graph
on-the-fly.

[& | UNIVERSITY OF
B

¥ TORONTO

Expanding

UNIVERSITY OF

; w TORONTO

Dijkstra’s Search

o0 > Goal
1
1 5

Uniform Cost Search

Start

¢
f

Expanding

UNIVERSITY OF

¥ TORONTO

Uniform Cost Search

3 vf TORONTO

Uniform Cost Search

IIIIIIIIIIII

TORONTO

KA
B8 B8
b 4

Uniform Cost Search

¥ TORONTO

Uniform Cost Search
4

children(A) = {B,C, D}

parent pointer
Start

@ e(/ g-cost

S CLOSED List

¥ TORONTO

def UniformCostSearch(s;):

OPEN « {s;},CLOSED < {},
g(s;) = 0, parent(s;) = 0
while OPEN # {}: ’
P < argmlnﬁs'EOPEN}g(S)
if p is a goal, return path to p

for c € children(p):
if c ¢ OPEN U CLOSED:

g(c) = g(p) +k(p,c)
parent(c) =p

OPEN « OPEN U {c}
elseif g(c) > g(p) + k(p, c):

g(c) = g(p) +x(p,c)
parent(c) =p

if c € CLOSED:
OPEN « OPEN U {c}
CLOSED « CLOSED — {c}
OPEN <« OPEN — {p}, CLOSED « CLOSED U {p}
return No solution exists

OPEN « {s;}, CLOSED « {}, e
g(s,) = 0, parent(s;) = ¢) Initialize Search

Get node from OPEN
while OPEN # {}:
p <« argmlnﬂS/EOPEN}g(s’)
if p is a goal, return path to p

Generate and handle
children

for c € children(p):
if c ¢ OPEN U CLOSED:

g(c) =gp) +x(p,c)
parent(c) =p

OPEN « OPEN U {c}

Generate and handle
children

for c € children(p):

elseif g(c) > g(p) + k(p, c):
g(c) = g(p) + x(p,c)
parent(c) =p

if c € CLOSED:
OPEN <« OPEN U {c}
CLOSED « CLOSED — {c}

Close expanded
node

OPEN < OPEN — {p},CLOSED < CLOSED U {p}

Repeat
while OPEN =+ {}:
p < .argminﬂs’E()PEN}g (s’)
if p is a goal, return path to p

return No solution exists

Uniform Cost Search

= UCS is completely exhaustive and brute-force

= Makes it prohibitively expensive

Depth Nodes Time Memory
2 1100 11 seconds | megabyte
4 111,100 11 seconds 106 megabytes
6 107 19 minutes 10 gigabytes
| 8 10° 31 hours | terabytes
! 10 10 129 days 101 terabytes
12 1013 35 years 10 petabytes
14 10"° 3,523 years 1 exabyte
Figure 3.11 Time and memory requirements for breadth-first search. The numbers shown |
assume branching factor b = 10; 10,000 nodes/second; 1000 bytes/node.

UNIVERSITY OF

¥ TORONTO

Extending Candidate Paltlhs
‘* . @
1
(D
4
3 8
(&)
0

%ﬂ]ﬁ UNIVERSITY OF
¥ TORONTO

Extendlng Candidate Paths

N
4
Start @
() 6
0

IIIIIIIIIIII

*:'f TORONTO

Extending Candidate Paths

<@
4

Start

aa

IIIIIIIIIIII
E

¥ TORONTO

G

Extending Candidate Paths

Start

"¢ | UNIVERSITY OF

» TORONTO

Ba 8
boYs

Uniform Cost Search

= Jteratively extending some candidate path

= Uses the g-cost as the basis of this selection
— Only info that uniform cost search has about a state
— Only “uses” the transition function

= But each vertex represents a state
— There is more information that can be used

o
‘@ | UNIVERSITY OF
28 Al

¥ TORONTO

Uniform Cost Search

= Jteratively extending some candidate path

= Uses the g-cost as the basis of this selection
— Only info that uniform cost search has about a state
— Only “uses” the transition function

= But each vertex represents a state
— There is more information that can be used

*

@ UNIVERSITY OF
a8 8

¥ TORONTO

Graph Underlying Floortile

o OO0
o) e
‘0‘0'

IIIIIIIIIIII

TORONTO

States Corresponding to Vertices

A N
/“’ o - \

UNIVERSITY OF

¥ TORONTO

Heuristic Guidance

= A heuristic function h is a function from states*
to the non-negative real values

— Estimate the cost to reach the goal from the state

— Other algorithms use such functions to change how they
determine the order for extending candidate paths

= Often based on domain knowledge or domain
simplification

* Or sometimes candidate paths to real values

&
C g] UNIVERSITY OF
28 Al

¥ TORONTO

Pathfinding

IIIIIIIIIIII

Pathfinding

%1 UNIVERSITY OF

¥ TORONTO

Pathfinding

&

¥ UNIVERSITY OF

¥ TORONTO

Floortile from IPC 2011

= What are possible heuristics or simplications here?

&

I
gy | UNIVERSITY OF

TORONTO

=
B @8

Automatic Heuristic Generation

= Can use domain knowledge

= Many automatic heuristic generation techniques
— Delete relaxation
— Pattern databases
— Landmark-based heuristics
— Merge-and-Shrink
— Counterexample guided abstraction refinement heuristics

*

@ UNIVERSITY OF
a8 8

¥ TORONTO

Automatic Heuristic Generation

= Can use domain knowledge

= Many automatic heuristic generation techniques
— Delete relaxation
— Pattern databases
— Landmark-based heuristics
— Merge-and-Shrink
— Counterexample guided abstraction refinement heuristics

&
g_‘j UNIVERSITY OF
L

¥ TORONTO

Delete Relaxation

= Can only achieve new facts, never delete them

Move Action: MOVE-0-0-0-1
@ Pre: AT-0-0, WHITE-0-1
¥ TORONTO Post: AT-0-1, not(AT-0-0)

Delete Relaxation

= Can only achieve new facts, never delete them

Move Action: MOVE-0-0-0-1
UNIVERSITY OF Pre AT'O'O, WHITE'O'1

¥ TORONTO Post: AT-0-1, aet-AT-0-0)

a

3

&

Delete Relaxation

= Can only achieve new facts, never delete them

Move Action: MOVE-0-0-0-1
& Pre: AT-0-0, WHITE-0-1

1
[es UNIVERSITY OF

¥ TORONTO Post: AT-0-1, ret(AT+-0-0-

Delete Relaxation

= Can only ac]

nieve new facts, never delete them

Paint Action:

&

o1
[&] UNIVERSITY OF

PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,
WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, not(WHITE-0-2)

Delete Relaxation

= Can only ac]

nieve new facts, never delete them

Paint Action:

UNIVERSITY OF

¥ TORONTO

PAINT-B-0-1-0-2
Pre: AT-0-1, LOADED-B,
WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, retfAMHHE-0-2)

Delete Relaxation

= Can only achieve new facts, never delete them

Paint Action: PAINT-B-0-1-0-2

Pre: AT-0-1, LOADED-B,
[or WHITE-0-2, NEED-B-0-2
Post: BLACK-0-2, protfAHITE-0-2)

Delete Relaxation

= Can only achieve new facts, never delete them

Load Action: LOAD-RED
& Pre: LOADED-B

¥ TORONTO Post: LOADED-R, not(LOADED-B)

Delete Relaxation

= Can only achieve new facts, never delete them

Load Action: LOAD-RED
& Pre: LOADED-B

I
] UNIVERSITY OF

TORONTO Post: LOADED-R, rot{OADED-B)

Delete Relaxation

= Can only achieve new facts, never delete them

Load Action: LOAD-RED
& Pre: LOADED-B

e
[o9 UNIVERSITY OF

© TORONTO Post: LOADED-R, re{LOADED-B)}

Delete Relaxation

= Still NP-complete to optimally solve delete relaxed
problems
— Better than PSPACE-hard, but still ...

= Do have polynomial ways to solve them suboptimally
or come up with a lower bound

"% UNIVERSITY OF
B o

¥ TORONTO

Summary

= Can solve planning using graph search
— Generate graph and use Dijkstra’s search

= Can incrementally generate the graph and stop early
— Uniform cost search is this adjustment

= Uniform cost search is only using transition function
— Ignoring state information

= Heuristic functions use state information to generate
an estimate of the cost to a goal

UNIVERSITY OF

& TORONTO

