Eligibility Traces

Rick Valenzano and Sheila McIlraith

Acknowledgements

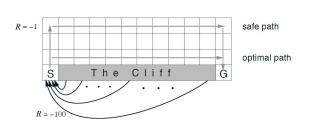
- Based on textbook by Sutton and Barto
- Also used slides from Adam White

Outline

- TD update online based on one-step returns
 - Can be used for episodic and continuing tasks
- TD prediction using TD updates
 - Often faster than MC
- Sarsa on-policy control
- Q-learning off-policy control

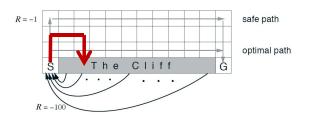
Cliff World

- Consider grid world, -1 per step, -1000 if fall off cliff
 - 4-connected, deterministic actions



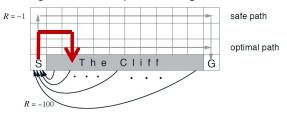
Cliff World

- Consider grid world, -1 per step, -1000 if fall off cliff
 - 4-connected, deterministic actions



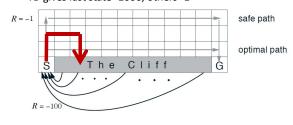
Cliff World

- Consider grid world, -1 per step, -1000 if fall off cliff
 - 4-connected, deterministic actions
 - MC gives all states on path -1000 + -g



Cliff World

- Consider grid world, -1 per step, -1000 if fall off cliff
 - · 4-connected, deterministic actions
 - TD gives last state -1000, others -1



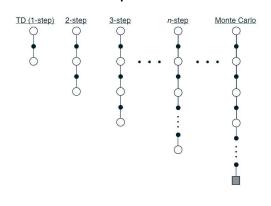
n-Step Returns

- TD only looks at immediate outcome
 - Reward and value function of resulting state
- Could look a couple of steps along the episode

TD(0) uses $R_{t+1} + \gamma \cdot V(S_{t+1})$ as the target could use

$$R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot V(S_{t+2})$$
 or $R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot R_{t+3} + \gamma^3 \cdot V(S_{t+3})$

n-Step Returns



n-Step Returns

$$G_t^{(n)} = R_{t+1} + \gamma \cdot R_{t+2} + \dots + \gamma^n \cdot V(S_{t+n})$$

- n-step TD uses $G_t^{(n)}$ as the target for update
 - Previous update was $G_t^{(1)}$ (one-step return)
- ullet $G_t^{(n)}$ approximates the return G_t
 - Actual return for first n steps, $V(S_{t+n})$ approx. the rest

n-Step TD

- n-step TD uses $G_t^{(n)}$ as the target for update
 - All converge as we want
- Can't update $V(S_t)$ for n steps
 - · Nothing happens in the meantime
 - Even though we get feedback in that time
- Also ignores the value functions along the way
 - Have a sequence of V values might tell you more than 1

Complex TD Backups

• Turns out other can use combinations as well

$$\frac{1}{3}G_t^{(1)} + \frac{1}{3}G_t^{(2)} + \frac{1}{3}G_t^{(3)}$$

Or

$$\frac{9}{12}G_t^{(1)} + \frac{2}{12}G_t^{(2)} + \frac{1}{12}G_t^{(3)}$$

• Converge as long as coefficients sum to 1

$TD(\lambda)$ Updates

• The TD(λ) update is a particular kind

$$G_t^{\lambda} = \left[(1 - \lambda) \cdot \sum_{n=1}^{T-t-1} \lambda^{n-1} \cdot G_t^{(n)} \right] + \lambda^{T-t-1} \cdot G_t$$

- λ is a parameter from 0 to 1
- *T* is the length of the episode

$TD(\lambda)$ Updates

• The $TD(\lambda)$ update is a particular kind

$$G_t^{\lambda} = \left[(1 - \lambda) \cdot \sum_{n=1}^{T-t-1} \lambda^{n-1} \cdot G_t^{(n)} \right] + \lambda^{T-t-1} \cdot G_t$$

$$\bullet \text{ If } \lambda = 1 \dots$$

$TD(\lambda)$ Updates

• The $TD(\lambda)$ update is a particular kind

$$G_t^{\lambda} = \left[(1 - \lambda) \cdot \sum_{n=1}^{T-t-1} \lambda^{n-1} \cdot G_t^{(n)} \right] + \lambda^{T-t-1} \cdot G_t$$

• If $\lambda = 1 \dots$

$TD(\lambda)$ Updates

• The $TD(\lambda)$ update is a particular kind

$$G_t^{\lambda} = G_t$$

• If $\lambda = 1$...

$TD(\lambda)$ Updates

• The $TD(\lambda)$ update is a particular kind

$$G_t^{\lambda} = G_t$$

• If $\lambda = 1$... becomes MC

$\mathsf{TD}(\lambda)$ Updates

• The $TD(\lambda)$ update is a particular kind

$$G_t^{\lambda} = \left[(1-\lambda) \cdot \sum_{n=1}^{T-t-1} \lambda^{n-1} \cdot G_t^{(n)} \right] + \lambda^{T-t-1} \cdot G_t$$

$$\bullet \text{ If } \lambda = 0 \dots$$

$\mathsf{TD}(\lambda)$ Updates

• The TD(λ) update is a particular kind

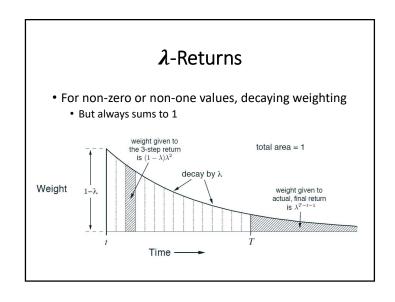
$$G_t^{\lambda} = \left[(1 - \lambda) \cdot \sum_{n=1}^{T-t-1} \lambda^{n-1} \cdot G_t^{(n)} \right] + \lambda^{T-t-1} \cdot G_t$$

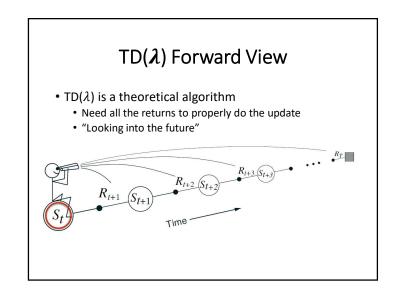
• If $\lambda = 0$...

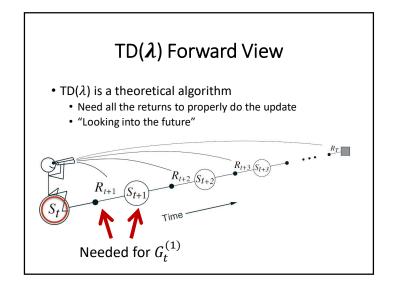
$TD(\lambda)$ Updates

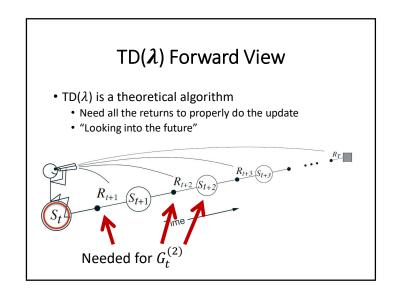
• The $TD(\lambda)$ update is a particular kind

$$G_t^\lambda=\lambda^0G_t^{(1)}+\lambda^1G_t^{(2)}+\cdots$$
 • If $\lambda=0$...
$$0^0=1 \qquad 0$$



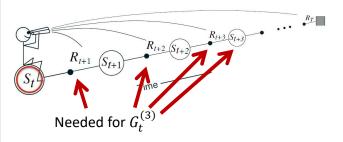






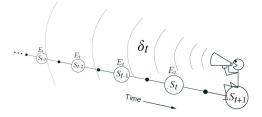
$\mathsf{TD}(\lambda)$ Forward View

- $TD(\lambda)$ is a theoretical algorithm
 - Need all the returns to properly do the update
 - "Looking into the future"



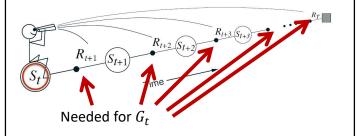
$\mathsf{TD}(\lambda)$ Backward View

- Can't look into the future to implement fwd view
- Instead, update as we go
 - Use latest info to update states visited earlier in episode



$\mathsf{TD}(\lambda)$ Forward View

- $TD(\lambda)$ is a theoretical algorithm
 - Need all the returns to properly do the update
 - "Looking into the future"



$\mathsf{TD}(\lambda)$ Updates

- But what should we send back?
- Could use latest reward and state transition to calculate $G_t^{(i)}$ for S_t , i steps later
 - Calculate $(1-\lambda)\cdot \sum_{1\leq n\leq i-1}\lambda^{n-1}\cdot G_t^{(n)} + \lambda\cdot G_t^{(i)}$
 - Use it as target
- Requires a lot of book-keeping, and is expensive
 - Not exactly forward view anyways
 - Makes decisions on incomplete intermediate values
 - Think about cases where an episode loops

Approximate $TD(\lambda)$ Updates

- Will use a simpler approximation
- On time step t', every S_t where t < t' is updated
- Will compute some $\Delta(t', S_t)$
- On time step t', update to $V(S_t)$ is as follows:

$$V(S_t) \leftarrow V(S_t) + \Delta(t', S_t)$$

Eligibility Traces

$$\Delta(t', S_t) = \alpha \cdot \delta_{t'} \cdot E(S_t)$$

- Eligibility traces implement this intuition
 - "Latest TD-error is less relevant farther back in time"
- Eligibility traces keep track of how recent each state was visited
 - Determine how "eligible" a state is for newest learning update (using the TD-error)

Approximate $TD(\lambda)$ Updates

• On time step t', update to $V(S_t)$ is as follows:

$$V(S_t) \leftarrow V(S_t) + \Delta(t', S_t)$$

• To calculate $\Delta(t', S_t)$, first consider **TD Error**:

$$\delta_{t'} = R_{t'+1} + \gamma \cdot V(S_{t'+1}) - V(S_{t'})$$

- Going to define $\Delta(t', S_t) = \alpha \cdot \delta_{t'} \cdot E(S_t)$
 - Intuitively, $E(S_t)$ will be smaller for t farther in past
 - "Latest TD-error is less relevant farther back in time"

Accumulating Traces

- Accumulating traces are a type of eligibility trace
- Let $E_t(s)$ be the value of E(s) after t steps
 - Start with $E_t(s)=0$, $\forall s$ at beginning of each episode
- Update is as follows:

$$E_t(s) = \begin{cases} \gamma \cdot \lambda \cdot E_{t-1}(s) + 1 & \text{, if } s = S_t \\ \gamma \cdot \lambda \cdot E_{t-1}(s) & \text{, otherwise} \end{cases}$$

Accumulating Traces

- Accumulating traces are a type of eligibility trace
- Let E_t(s) be the value of E(s) after t steps
 Start with E_t(s) = 0, ∀s at beginning of each episode
- Update is as follows:

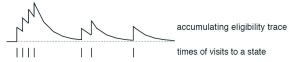
$$E_t(s) = \begin{cases} \gamma \cdot \lambda \cdot E_{t-1}(s) + 1 & \text{, if } s = S_t \\ \gamma \cdot \lambda \cdot E_{t-1}(s) & \text{, otherwise} \end{cases}$$

Accumulating Traces

• Accumulating trace update is as follows:

$$E_t(s) = \begin{cases} \gamma \cdot \lambda \cdot E_{t-1}(s) + 1 & \text{, if } s = S_t \\ \gamma \cdot \lambda \cdot E_{t-1}(s) & \text{, otherwise} \end{cases}$$

- "Eligibility" of a state decays when not visited
 - Determines impact of latest TD-error on a state



Accumulating Traces

• Accumulating trace update is as follows:

$$E_t(s) = \begin{cases} \gamma \cdot \lambda \cdot E_{t-1}(s) + 1 & \text{, if } s = S_t \\ \gamma \cdot \lambda \cdot E_{t-1}(s) & \text{, otherwise} \end{cases}$$

- If $\lambda = 0$, $E_t(s) = 1$ for $s = S_t$, else $E_t(s) = 0$
 - · Only updates the last state visited
 - Still equivalent to TD(0) update
- If $\lambda = 1$, still equivalent to TD(1) update as well

Eligibility Traces

- Accumulating traces are simple
 - But have some issues
- Other types of traces as well
 - · Replacing traces
 - Dutch traces
- See textbook for more details
- But can now consider accumulating traces in Sarsa

Sarsa(λ) with Accumulating Traces

```
Initialize Q(s,a) arbitrarily, for all s \in \mathcal{S}, a \in \mathcal{A}(s)

Repeat (for each episode):

E(s,a) = 0, for all s \in \mathcal{S}, a \in \mathcal{A}(s)

Initialize S, A

Repeat (for each step of episode):

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy)

\delta \leftarrow R + \gamma Q(S', A') - Q(S, A)

E(S, A) \leftarrow E(S, A) + 1

For all s \in \mathcal{S}, a \in \mathcal{A}(s):

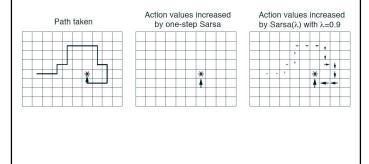
Q(s,a) \leftarrow Q(s,a) + \alpha \delta E(s,a)

E(s,a) \leftarrow \gamma \lambda E(s,a)

S \leftarrow S'; A \leftarrow A'

until S is terminal
```

One-Step vs Multi-Step Sarsa



Off-Policy Control with Eligibility Traces

- When using off-policy methods, need to be more careful when using eligibility traces
- Consider $G_t^{(2)} = R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot V(S_{t+2})$
 - This is a two-step estimate of expected return when using the current policy for two-steps
 - But is only an estimate for that specific policy
- In off-policy methods, those two actions might have been selected according to some other policy
 - Can't necessarily use them as estimate of target policy

Off-Policy Control with Eligibility Traces

- Consider $G_t^{(2)} = R_{t+1} + \gamma \cdot R_{t+2} + \gamma^2 \cdot V(S_{t+2})$
- Can only use $G_t^{(2)}$, if actions chosen would have been selected by the target policy
 - Can't "backpropagate" current TD-error to previous states past points where target and behaviour policy don't coincide
- Implement this by resetting all eligibility traces to 0 whenever action selected is not what the target policy would have selected

$Q(\lambda)$ with Accumulating Traces

```
 \begin{aligned} & \text{Initialize } Q(s,a) \text{ arbitrarily, for all } s \in \mathbb{S}, a \in \mathcal{A}(s) \\ & \text{Repeat (for each episode):} \\ & E(s,a) = 0, \text{ for all } s \in \mathbb{S}, a \in \mathcal{A}(s) \\ & \text{Initialize } S, A \\ & \text{Repeat (for each step of episode):} \\ & \text{Take action } A, \text{ observe } R, S' \\ & \text{Choose } A' \text{ from } S' \text{ using policy derived from } Q \text{ (e.g., $\varepsilon$-greedy)} \\ & A^* \leftarrow \text{argmax}_a Q(S',a) \text{ (if } A' \text{ ties for the max, then } A^* \leftarrow A') \\ & \delta \leftarrow R + \gamma Q(S',A^*) - Q(S,A) \\ & E(S,A) \leftarrow E(S,A) + 1 \\ & \text{For all } s \in \mathbb{S}, a \in \mathcal{A}(s): \\ & Q(s,a) \leftarrow Q(s,a) + \alpha \delta E(s,a) \\ & \text{If } A' = A^*, \text{ then } E(s,a) \leftarrow \gamma \lambda E(s,a) \\ & \text{else } E(s,a) \leftarrow 0 \\ & S \leftarrow S'; A \leftarrow A' \\ & \text{until $S$ is terminal} \end{aligned}
```

Off-Policy vs On-Policy $TD(\lambda)$

- · Off-policy methods are more complicated
- Often must reset eligibility traces in off-policy
 - Decreases "how much is learned" per step

Efficient Eligibility Traces

- Earlier descriptions are naïve
- If have parallel machine, can quickly do eligibility trace updates
 - If not, will be expensive
- But eligibility of most states will be 0, many others will be close to 0
 - Can usually get effective behaviour by only updating a few steps in the past (instead of all steps)

Summary

- Eligibility traces allow for middle ground between TD(0) and Monte Carlo updates
- Realized using eligibility traces
 - Used accumulating traces as an example
- Introduced Sarsa(λ) and Q(λ)