Eligibility Traces

Rick Valenzano and Sheila Mcllraith

Acknowledgements
* Based on textbook by Sutton and Barto

* Also used slides from Adam White

Outline

* TD update online based on one-step returns
* Can be used for episodic and continuing tasks

* TD prediction using TD updates
* Often faster than MC

* Sarsa on-policy control

* Q-learning off-policy control

Cliff World

* Consider grid world, -1 per step, -1000 if fall off cliff

* 4-connected, deterministic actions

R=-1|) safe path

optimal path

S The Cliff G

2016-10-29

Cliff World

* Consider grid world, -1 per step, -1000 if fall off cliff
¢ 4-connected, deterministic actions

R=-1|) o safe path

optimal path

S The Cliff G

R“MOW

Cliff World

* Consider grid world, -1 per step, -1000 if fall off cliff
¢ 4-connected, deterministic actions
* MC gives all states on path -1000 + -g

R=-1|) o safe path

optimal path

S The Cliff G

R“MOW

Cliff World

* Consider grid world, -1 per step, -1000 if fall off cliff
* 4-connected, deterministic actions
* TD gives last state -1000, others -1

R=-1|} > safe path

optimal path

S The Cliftf G

n-Step Returns

* TD only looks at immediate outcome
* Reward and value function of resulting state

* Could look a couple of steps along the episode

TD(0) uses Ryy1q + ¥ - V(Se41) as the target
could use

Res1 +V Rewr +¥? - V(Sis2) or

Rev1 +V - Rewz +¥? - Reyz + 73 - V(Sii3)

2016-10-29

n-Step Returns

ID (1-step) 2-step 3-step n-step Monte Carlo

.
é

n-Step Returns
Gt(n) =Rep1+V Reyz + -+ 7" - V(Sean)

* n-step TD uses Gt(") as the target for update

* Previous update was Gt(l) (one-step return)

. Gt(n) approximates the return G,
* Actual return for first n steps, V(S¢4,,) approx. the rest

n-Step 1D

* n-step TD uses Gt(n) as the target for update
 All converge as we want

* Can’t update V (S;) for n steps
* Nothing happens in the meantime
* Even though we get feedback in that time

* Also ignores the value functions along the way
* Have a sequence of I/ values might tell you more than 1

Complex TD Backups

* Turns out other can use combinations as well

1 1 1
6P +26P +267

3 3 3°¢
Or
9 2 1
2,22, 2 ~03)
12 Ge +12 Ge +12 Ge

* Converge as long as coefficients sum to 1

2016-10-29

TD(A) Updates

* The TD(A) update is a particular kind

T—-t-1
Gt=|a-n- Y 1t

n=1

* Ais a parameter from O to 1
* T is the length of the episode

+ AT G,

TD(A) Updates

* The TD(A) update is a particular kind

T-t-1
Gt=|a-n- Y 1t

n=1

+ AT G,

cifa=1..

TD(A) Updates

* The TD(A) update is a particular kind

T—-t-1
Gt = l(1 —2)- Z -t G§")] + AT G,

n=1

0
“ifa=1..

1

TD(A) Updates
* The TD(A) update is a particular kind
th =G

cifA=1..

2016-10-29

TD(A) Updates
* The TD(A) update is a particular kind
th = G¢

*IfA=1..becomes MC

TD(A) Updates

* The TD(A) update is a particular kind

T-t-1
Gt=|a-n- Y 1t

n=1

+ AT G,

*IfA=0..

TD(A) Updates

* The TD(A) update is a particular kind

T—-t-1
Gl = l(1 DI

n=1

+){.T—t_l ° Gt

1 0
*If1=0..

TD(A) Updates
* The TD(A) update is a particular kind
Gt =)gt“) + 2162 + -

«ifi=0. 0°=1 0

2016-10-29

A-Returns

* For non-zero or non-one values, decaying weighting
¢ But always sums to 1
weight given to

the 3-step return total area = 1
is (1—)2

decay by A

weight given to
actual, final return
is)\T*l =l

Time —

TD(A) Forward View

* TD(A) is a theoretical algorithm
* Need all the returns to properly do the update
* “Looking into the future”

|
:

TD(A) Forward View

* TD(A) is a theoretical algorithm
* Need all the returns to properly do the update
* “Looking into the future”

Needed for Gt(l)

TD(A) Forward View

* TD(A) is a theoretical algorithm
* Need all the returns to properly do the update
* “Looking into the future”

Needed for Gt(z)

2016-10-29

TD(A) Forward View

* TD(A) is a theoretical algorithm
* Need all the returns to properly do the update
* “Looking into the future”

:

[
_ '
4

3

Needed for Gt(

TD(A) Forward View

* TD(A) is a theoretical algorithm
* Need all the returns to properly do the update
* “Looking into the future”

Needed for G,

TD(A) Backward View

* Can’t look into the future to implement fwd view

* Instead, update as we go
 Use latest info to update states visited earlier in episode

TD(A) Updates

* But what should we send back?

* Could use latest reward and state transition to calculate
th) for S, i steps later
« Calculate (1 = 2) - Syenei 1 V-G +1- G
¢ Use it as target

* Requires a lot of book-keeping, and is expensive
* Not exactly forward view anyways
* Makes decisions on incomplete intermediate values
* Think about cases where an episode loops

2016-10-29

Approximate TD(A) Updates

* Will use a simpler approximation
* Ontime step t’, every S; where t <t is updated
* Will compute some A(t', S;)

* On time step t, update to V(S;) is as follows:

V(Se) « V(S + A, Sy)

Approximate TD(A) Updates
* On time step t', update to V(S,) is as follows:
V(Se) « V(St) + A, Se)
* To calculate A(t', Sy), first consider TD Error:
6tl = Rtr+1 +vy- V(Str+1) - V(Str)

* Going to define A(t',S;) = a - 6,7 - E(S;)
* Intuitively, E(S;) will be smaller for t farther in past
* “Latest TD-error is less relevant farther back in time”

Eligibility Traces
A(t',S,) = a -8, - E(Sp)

* Eligibility traces implement this intuition
* “Latest TD-error is less relevant farther back in time”

* Eligibility traces keep track of how recent each state
was visited

* Determine how “eligible” a state is for newest learning
update (using the TD-error)

Accumulating Traces

* Accumulating traces are a type of eligibility trace

* Let E;(s) be the value of E(s) after t steps
* Start with E;(s) = 0, Vs at beginning of each episode

* Update is as follows:
_]/'/’l‘Et_l(S) +1 ,ifSZSt
Ee(s) = { YA Ei_1(s) ,otherwise

2016-10-29

Accumulating Traces

* Accumulating traces are a type of eligibility trace

* Let E;(s) be the value of E(s) after t steps
* Start with E.(s) = 0, Vs at beginning of each episode

* Update is as follows:
_ Y'A‘Et_l(s) +1 ,ifS:St
Ee(s) = { Yy A-E_1(s) ,otherwise

Accumulating Traces

* Accumulating trace update is as follows:

]/'/’l‘Et_l(S) +1 ,ifSZSt

Ei(s) = { YA Ei_1(s) , otherwise

* “Eligibility” of a state decays when not visited
* Determines impact of latest TD-error on a state

M accumulating eligibility trace

|11 || | times of visits to a state

Accumulating Traces

* Accumulating trace update is as follows:

Y'A‘Et_l(s) +1 ,ifS:St
y-A-Eq_1(s) ,otherwise

E¢(s) :{

*IfA=0,E.(s)=1fors =5;,else E,(s) =0
* Only updates the last state visited
« Still equivalent to TD(0) update

* If A = 1, still equivalent to TD(1) update as well

Eligibility Traces

* Accumulating traces are simple
* But have some issues

* Other types of traces as well
* Replacing traces
* Dutch traces

* See textbook for more details

* But can now consider accumulating traces in Sarsa

2016-10-29

Sarsa(A) with Accumulating Traces

Initialize Q(s, a) arbitrarily, for all s € 8,a € A(s)
Repeat (for each episode):
E(s,a) =0, for all s € S,a € A(s)
Initialize S, A
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
04— R+7Q(S",A")—Q(S,A)
E(S,A)+ E(5,A)+1
For all s € S,a € A(s):
Q(s,a) + Q(s,a) + ad E(s,a)
E(s,a) < yAE(s,a)
S+ 8, A+ A
until S is terminal

One-Step vs Multi-Step Sarsa

Action values increased Action values increased
Path taken by one-step Sarsa by Sarsa(i) with 2=0.9
| 1 : 5| 5 o
JimEi ;
r 5 [N =14
] * | * =| =|* * ¥
[S | 4 4 |-

Off-Policy Control with Eligibility
Traces

* When using off-policy methods, need to be more
careful when using eligibility traces

. 2
* Consider Gt() = Rpp1 7 Resz + 72 V(Siaa)
* This is a two-step estimate of expected return when
using the current policy for two-steps
* But is only an estimate for that specific policy

* In off-policy methods, those two actions might
have been selected according to some other policy
* Can’t necessarily use them as estimate of target policy

Off-Policy Control with Eligibility
Traces

* Consider Gt(z) =Rip1+ 7V Rego + 12 V(St42)

* Can only use Gt(z), if actions chosen would have
been selected by the target policy
* Can’t “backpropagate” current TD-error to previous

states past points where target and behaviour policy
don’t coincide

* Implement this by resetting all eligibility traces to 0
whenever action selected is not what the target
policy would have selected

2016-10-29

10

Q(4) with Accumulating Traces

Initialize Q(s,a) arbitrarily, for all s € 8,a € A(s)
Repeat (for each episode):
E(s,a) =0, for all s € 8,a € A(s)
Initialize 1
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from Q (e.g., s-greedy)
A* + argmax, Q(5',a) (if A’ ties for the max, then A* + A’)
d+ R+~Q(S".A%) —Q(S,4)
E(S,A)+ E(S,A)+1
For all s € 8,a € A(s):
Q(s,a) + Q(s,a) + adE(s,a)
If A’ = A*, then E(s,a) <+ y\E(s,a)
else E(s,a) «+ 0
S+ 8, A« A
until S is terminal

Off-Policy vs On-Policy TD(A)

* Off-policy methods are more complicated

* Often must reset eligibility traces in off-policy
* Decreases “how much is learned” per step

Efficient Eligibility Traces
* Earlier descriptions are naive

* If have parallel machine, can quickly do eligibility
trace updates
« If not, will be expensive

* But eligibility of most states will be 0, many others
will be close to 0

* Can usually get effective behaviour by only updating a
few steps in the past (instead of all steps)

Summary

* Eligibility traces allow for middle ground between
TD(0) and Monte Carlo updates

* Realized using eligibility traces
* Used accumulating traces as an example

* Introduced Sarsa(A) and Q(A)

2016-10-29

11

