
Eligibility Traces
Rick Valenzano and Sheila McIlraith

Acknowledgements

• Based on textbook by Sutton and Barto

• Also used slides from Adam White

Outline

• TD update online based on one-step returns
• Can be used for episodic and continuing tasks

• TD prediction using TD updates
• Often faster than MC

• Sarsa on-policy control

• Q-learning off-policy control

Cliff World

• Consider grid world, -1 per step, -1000 if fall off cliff
• 4-connected, deterministic actions

Cliff World

• Consider grid world, -1 per step, -1000 if fall off cliff
• 4-connected, deterministic actions

Cliff World

• Consider grid world, -1 per step, -1000 if fall off cliff
• 4-connected, deterministic actions
• MC gives all states on path -1000 + -g

Cliff World

• Consider grid world, -1 per step, -1000 if fall off cliff
• 4-connected, deterministic actions
• TD gives last state -1000, others -1

-Step Returns

• TD only looks at immediate outcome
• Reward and value function of resulting state

• Could look a couple of steps along the episode

TD(0) uses as the target
could use

or

-Step Returns

-Step Returns

• -step TD uses as the target for update
• Previous update was (one-step return)

• approximates the return
• Actual return for first steps, approx. the rest

-Step TD

• -step TD uses as the target for update
• All converge as we want

• Can’t update for steps
• Nothing happens in the meantime
• Even though we get feedback in that time

• Also ignores the value functions along the way
• Have a sequence of values might tell you more than 1

Complex TD Backups

• Turns out other can use combinations as well

Or

• Converge as long as coefficients sum to 1

TD() Updates

• The TD() update is a particular kind

• is a parameter from to
• is the length of the episode

TD() Updates

• The TD() update is a particular kind

• If …

TD() Updates

• The TD() update is a particular kind

• If …

TD() Updates

• The TD() update is a particular kind

• If …

TD() Updates

• The TD() update is a particular kind

• If … becomes MC

TD() Updates

• The TD() update is a particular kind

• If …

TD() Updates

• The TD() update is a particular kind

• If …

TD() Updates

• The TD() update is a particular kind

• If …

-Returns

• For non-zero or non-one values, decaying weighting
• But always sums to 1

TD() Forward View

• TD() is a theoretical algorithm
• Need all the returns to properly do the update
• “Looking into the future”

TD() Forward View

• TD() is a theoretical algorithm
• Need all the returns to properly do the update
• “Looking into the future”

Needed for

TD() Forward View

• TD() is a theoretical algorithm
• Need all the returns to properly do the update
• “Looking into the future”

Needed for

TD() Forward View

• TD() is a theoretical algorithm
• Need all the returns to properly do the update
• “Looking into the future”

Needed for

TD() Forward View

• TD() is a theoretical algorithm
• Need all the returns to properly do the update
• “Looking into the future”

Needed for

TD() Backward View

• Can’t look into the future to implement fwd view

• Instead, update as we go
• Use latest info to update states visited earlier in episode

TD() Updates

• But what should we send back?

• Could use latest reward and state transition to calculate
for , steps later

• Calculate ௡ିଵ
௧
௡

௧
(௜)

ଵஸ௡ஸ௜ିଵ
• Use it as target

• Requires a lot of book-keeping, and is expensive
• Not exactly forward view anyways
• Makes decisions on incomplete intermediate values
• Think about cases where an episode loops

Approximate TD() Updates

• Will use a simpler approximation

• On time step , every where is updated

• Will compute some

• On time step , update to is as follows:

Approximate TD() Updates

• On time step , update to is as follows:

• To calculate , first consider TD Error:

ᇲ ᇲ ᇲ

• Going to define ᇲ

• Intuitively, ௧ will be smaller for farther in past
• “Latest TD-error is less relevant farther back in time”

Eligibility Traces

ᇲ

• Eligibility traces implement this intuition
• “Latest TD-error is less relevant farther back in time”

• Eligibility traces keep track of how recent each state
was visited

• Determine how “eligible” a state is for newest learning
update (using the TD-error)

Accumulating Traces

• Accumulating traces are a type of eligibility trace

• Let be the value of after steps
• Start with at beginning of each episode

• Update is as follows:

Accumulating Traces

• Accumulating traces are a type of eligibility trace

• Let be the value of after steps
• Start with at beginning of each episode

• Update is as follows:

Accumulating Traces

• Accumulating trace update is as follows:

• “Eligibility” of a state decays when not visited
• Determines impact of latest TD-error on a state

Accumulating Traces

• Accumulating trace update is as follows:

• If , for , else
• Only updates the last state visited
• Still equivalent to TD(0) update

• If , still equivalent to TD(1) update as well

Eligibility Traces

• Accumulating traces are simple
• But have some issues

• Other types of traces as well
• Replacing traces
• Dutch traces

• See textbook for more details

• But can now consider accumulating traces in Sarsa

Sarsa() with Accumulating Traces

One-Step vs Multi-Step Sarsa

Off-Policy Control with Eligibility
Traces

• When using off-policy methods, need to be more
careful when using eligibility traces

• Consider
• This is a two-step estimate of expected return when

using the current policy for two-steps
• But is only an estimate for that specific policy

• In off-policy methods, those two actions might
have been selected according to some other policy

• Can’t necessarily use them as estimate of target policy

Off-Policy Control with Eligibility
Traces

• Consider

• Can only use , if actions chosen would have
been selected by the target policy

• Can’t “backpropagate” current TD-error to previous
states past points where target and behaviour policy
don’t coincide

• Implement this by resetting all eligibility traces to 0
whenever action selected is not what the target
policy would have selected

Q(with Accumulating Traces

Off-Policy vs On-Policy TD()

• Off-policy methods are more complicated

• Often must reset eligibility traces in off-policy
• Decreases “how much is learned” per step

Efficient Eligibility Traces

• Earlier descriptions are naïve

• If have parallel machine, can quickly do eligibility
trace updates

• If not, will be expensive

• But eligibility of most states will be 0, many others
will be close to 0

• Can usually get effective behaviour by only updating a
few steps in the past (instead of all steps)

Summary

• Eligibility traces allow for middle ground between
TD(0) and Monte Carlo updates

• Realized using eligibility traces
• Used accumulating traces as an example

• Introduced Sarsa() and Q()

