Eligibility Traces

Rick Valenzano and Sheila Mcllraith

Acknowledgements

* Based on textbook by Sutton and Barto

e Also used slides from Adam White

Outline

* TD update online based on one-step returns
e Can be used for episodic and continuing tasks

* TD prediction using TD updates
* Often faster than MC

 Sarsa on-policy control

* Q-learning off-policy control

Cliff World

* Consider grid world, -1 per step, -1000 if fall off cliff

* 4-connected, deterministic actions

T s s —_— optimal path

&p)
_I
=
D
O
2%

Cliff World

* Consider grid world, -1 per step, -1000 if fall off cliff

* 4-connected, deterministic actions

| ‘ ‘ _ _ ‘ \ , , {3 safe path

I :l’ — T _ optimal path
S The Cliff G
RW

Cliff World

* Consider grid world, -1 per step, -1000 if fall off cliff

* 4-connected, deterministic actions
 MC gives all states on path -1000 + -g

I :l’ — T -._:__ optimal path
S The Cliff G
RW

Cliff World

* Consider grid world, -1 per step, -1000 if fall off cliff
e 4-connected, deterministic actions
* TD gives last state -1000, others -1

I :l’ — T -._:__ optimal path
S The Cliff G
RW

n-Step Returns

* TD only looks at immediate outcome
* Reward and value function of resulting state

* Could look a couple of steps along the episode

TD(0) uses Ry + v - V(S¢41) as the target
could use

Rev1+ 7V Repa 7% - V(Ses2) or

Rev1+ 7V Reyza + 7% Reps + 77 - V(Sey3)

n-Step Returns

1D (1-step) 2-step 3-step n-step Monte Carlo

O O @, O

® & ® ®

O Q) wew) O

® @ ® @

O O O O

& ® B

' O

S

n-Step Returns
Gt(n) =Rey1+V Repo + -+ 7" - V(Sian)

* n-step TD uses Gt(n) as the target for update

* Previous update was Gt(l) (one-step return)

. Gt(n) approximates the return G,
* Actual return for first n steps, V(S;4,,) approx. the rest

n-Step 1D

* n-step TD uses Gt(n) as the target for update
* All converge as we want

* Can’t update V(S;) for n steps
* Nothing happens in the meantime
* Even though we get feedback in that time

* Also ignores the value functions along the way
* Have a sequence of I/ values might tell you more than 1

Complex TD Backups

 Turns out other can use combinations as well

1 1 1
(1) 2) 3)
3G 56 + 56

Or

9 2 1
(1) (2) (3)
12 2% 12 12 G T2 12 G

* Converge as long as coefficients sumto 1

* The TD(A) update is a particular kind

G

TD(A) Updates

T—-t—1

(1 /1) z An—1 G(n)

* 1is a parameter from O to 1

* T is the length of the episode

+ AT_t_l ’ Gt

TD(A) Updates

* The TD(A) update is a particular kind

T—-t—1

Gr=|(1-2)- z An-1 G(") + AT-t-1. G,

lfA=1..

TD(A) Updates

* The TD(A) update is a particular kind

i T—t—1
GE=|(1-2) z a1 G(") +)L$‘1-Gt

\

0 1
*IfA=1..

TD(A) Updates
* The TD(A) update is a particular kind

GtA:Gt

lfA=1..

TD(A) Updates
* The TD(A) update is a particular kind

GtA:Gt

e|IfA=1..becomes MC

TD(A) Updates

* The TD(A) update is a particular kind

T—-t—1

Gr=|(1-2)- z An-1 G(") + AT-t-1. G,

*IfA=0..

TD(A) Updates

* The TD(A) update is a particular kind

T—-t—1

GE=|(1-2) z a1 G(") + ATt G,

\ \

1 0

*IfA=0..

TD(A) Updates

* The TD(A) update is a particular kind

GE = ﬁtm + 216D +

\

ifa=0.. 0°=1 0

* For non-zero or non-one values, decaying weighting

A-Returns

e But always sumsto 1

weight given to

the 3-step return total area = 1
i5 [1=X)%%
% decay by A
/ ’/ weight given to
% ™ actual, final return
/ I i i ; E : |S /\T—f.—l
/ W

Time —

TD(A) Forward View

* TD(A) is a theoretical algorithm
* Need all the returns to properly do the update
* “Looking into the future”

TD(A) Forward View

* TD(A) is a theoretical algorithm
* Need all the returns to properly do the update
* “Looking into the future”

Needed for Gt(l)

TD(A) Forward View

* TD(A) is a theoretical algorithm
* Need all the returns to properly do the update
* “Looking into the future”

Needed for Gt(z)

TD(A) Forward View

* TD(A) is a theoretical algorithm
* Need all the returns to properly do the update
* “Looking into the future”

Needed for Gt(B)

TD(A) Forward View

* TD(A) is a theoretical algorithm
* Need all the returns to properly do the update
* “Looking into the future”

Needed for G;

TD(A) Backward View

* Can’t look into the future to implement fwd view

* Instead, update as we go
* Use latest info to update states visited earlier in episode

TD(A) Updates

e But what should we send back?

* Could use latest reward and state transition to calculate
Gt(l) for S, [steps later
e Calculate (1 — 1) - Yqpei AL Gt(n) + A Gt(i)
* Use it as target

* Requires a lot of book-keeping, and is expensive
* Not exactly forward view anyways
* Makes decisions on incomplete intermediate values
* Think about cases where an episode loops

Approximate TD(A) Updates

* Will use a simpler approximation
* On time step t', every S; where t < t’ is updated
* Will compute some A(t', S;)

* On time step t, update to V (S;) is as follows:

V(Se) « V(Sy) +A(t, S)

Approximate TD(A) Updates

* On time step t/, update to I/ (S;) is as follows:

V(St) « V(St) + AL, St)

* To calculate A(t', S;), first consider TD Error:

Oty = Rpryq +7 - V(Spriq) —VI(Syr)

* Going to define A(t',S;) = a - 8,7 - E(St)
* Intuitively, E(S;) will be smaller for t farther in past
» “Latest TD-error is less relevant farther back in time”

Eligibility Traces
ACE,S) = a- 8y - E(Sp)

* Eligibility traces implement this intuition
o “Latest TD-error is less relevant farther back in time”

* Eligibility traces keep track of how recent each state
was visited

* Determine how “eligible” a state is for newest learning
update (using the TD-error)

Accumulating Traces

* Accumulating traces are a type of eligibility trace

* Let E;(s) be the value of E(s) after t steps
e Start with E;(s) = 0, Vs at beginning of each episode

e Update is as follows:
E,(s) = y-A-E._{(s) +1 ,ifs=S,.;
Yy -A-E._{(s) , otherwise

Accumulating Traces

* Accumulating traces are a type of eligibility trace

* Let E;(s) be the value of E(s) after t steps
e Start with E;(s) = 0, Vs at beginning of each episode

e Update is as follows:
E,(s) = y-A-E._{(s) +1 ,ifs=S,.;
Yy -A-E._{(s) , otherwise

Accumulating Traces

* Accumulating trace update is as follows:

Yy -A-E(_4(s) +1 |ifs=S5;
Yy -A-E._1(s) , otherwise

E.(s) = {

* “Eligibility” of a state decays when not visited
* Determines impact of latest TD-error on a state

\—[\ accumulating eligibility trace

| times of visits to a state

Accumulating Traces

* Accumulating trace update is as follows:

Yy -A-E(_4(s) +1 |ifs=S5;
Yy -A-E._1(s) , otherwise

E.(s) = {

cIf1=0,E,(s) =1fors =5;,else E;(s) =0
* Only updates the last state visited
e Still equivalent to TD(0) update

e [f A = 1, still equivalent to TD(1) update as well

Eligibility Traces

* Accumulating traces are simple
 But have some issues

e Other types of traces as well
* Replacing traces
* Dutch traces

e See textbook for more details

* But can now consider accumulating traces in Sarsa

Sarsa(A) with Accumulating Traces

Initialize Q)(s,a) arbitrarily, for all s € §,a € A(s)
Repeat (for each episode):
E(s,a) =0, for all s € §.a € A(s)
Initialize S, A
Repeat (for each step of episode):
Take action A, observe R, S’
Choose A’ from S’ using policy derived from @ (e.g., e-greedy)
0 +— R4+~vQ(S5,A") — Q(S,A)
E(S.A) «+ E(S.A)+1
For all s € 8,a € A(s):
Q(s,a) + Q(s,a) + ad E(s,a)
E(s,a) «— yAE(s,a)
S 544 A

until S 1s terminal

One-Step vs Multi-Step Sarsa

Action values increased Action values increased
Path taken by one-step Sarsa by Sarsa()\) with »=0.9
i M M I
{
{
s 4 e *
¥ * *| |y
A A } ==

Off-Policy Control with Eligibility
Traces

* When using off-policy methods, need to be more
careful when using eligibility traces

. 2
¢ C0n5|der Gt() — Rt+1 + y ‘ Rt+2 +)/2 ‘ V(St+2)
* This is a two-step estimate of expected return when
using the current policy for two-steps
e But is only an estimate for that specific policy

* In off-policy methods, those two actions might
have been selected according to some other policy

e Can’t necessarily use them as estimate of target policy

Off-Policy Control with Eligibility
Traces

 Consider Gt(z) =Ri1+V Rppy + 7% -V(Sp13)

e Can only use Gt(z), if actions chosen would have
been selected by the target policy

e Can’t “backpropagate” current TD-error to previous
states past points where target and behaviour policy
don’t coincide

* Implement this by resetting all eligibility traces to O
whenever action selected is not what the target
policy would have selected

Q(A) with Accumulating Traces

Initialize Q)(s,a) arbitrarily, for all s € 8,a € A(s)
Repeat (for each episode):
FE(s.a) =0, for all s € §,a € A(s)
Initialize S, A
Repeat (for each step of episode):
Take action A. observe R, S’
Choose A" from S’ using policy derived from Q (e.g., s-greedy)
A* + argmax, Q(S5’,a) (if A’ ties for the max, then A* < A")
0 +— R+~Q(S",A*) —Q(S, A)
E(S A)« E(S, A)+1
For all s € 8,a € A(s):
Q(s.a) + Q(s,a) + adFE(s,a)
If A" = A*, then E(s,a) + YAE(s,a)
else F(s,a) + 0
S+ ST A+ A
until S is terminal

Off-Policy vs On-Policy TD(A)

e Off-policy methods are more complicated

e Often must reset eligibility traces in off-policy
e Decreases “how much is learned” per step

Efficient Eligibility Traces

* Earlier descriptions are naive

* If have parallel machine, can quickly do eligibility
trace updates
* If not, will be expensive

 But eligibility of most states will be 0O, many others
will be close to O

e Can usually get effective behaviour by only updating a
few steps in the past (instead of all steps)

Summary

* Eligibility traces allow for middle ground between
TD(0) and Monte Carlo updates

* Realized using eligibility traces
* Used accumulating traces as an example

* Introduced Sarsa(A) and Q(A)

