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Outline

• TD update online based on one-step returns
• Can be used for episodic and continuing tasks

• TD prediction using TD updates
• Often faster than MC

• Sarsa on-policy control

• Q-learning off-policy control



Cliff World

• Consider grid world, -1 per step, -1000 if fall off cliff
• 4-connected, deterministic actions
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Cliff World

• Consider grid world, -1 per step, -1000 if fall off cliff
• 4-connected, deterministic actions
• TD gives last state -1000, others -1



-Step Returns

• TD only looks at immediate outcome
• Reward and value function of resulting state

• Could look a couple of steps along the episode

TD(0) uses as the target
could use

or



-Step Returns



-Step Returns

• -step TD uses as the target for update
• Previous update was (one-step return)

• approximates the return 
• Actual return for first steps, approx. the rest



-Step TD

• -step TD uses as the target for update
• All converge as we want

• Can’t update for steps
• Nothing happens in the meantime
• Even though we get feedback in that time

• Also ignores the value functions along the way
• Have a sequence of values might tell you more than 1



Complex TD Backups

• Turns out other can use combinations as well

Or 

• Converge as long as coefficients sum to 1



TD( ) Updates

• The TD( ) update is a particular kind

• is a parameter from to 
• is the length of the episode
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• The TD( ) update is a particular kind

• If …



-Returns

• For non-zero or non-one values, decaying weighting
• But always sums to 1



TD( ) Forward View

• TD( ) is a theoretical algorithm
• Need all the returns to properly do the update
• “Looking into the future”
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• TD( ) is a theoretical algorithm
• Need all the returns to properly do the update
• “Looking into the future”

Needed for 



TD( ) Backward View

• Can’t look into the future to implement fwd view

• Instead, update as we go
• Use latest info to update states visited earlier in episode



TD( ) Updates

• But what should we send back?

• Could use latest reward and state transition to calculate 
for , steps later

• Calculate ௡ିଵ
௧
௡

௧
(௜) 

ଵஸ௡ஸ௜ିଵ
• Use it as target

• Requires a lot of book-keeping, and is expensive
• Not exactly forward view anyways
• Makes decisions on incomplete intermediate values
• Think about cases where an episode loops



Approximate TD( ) Updates

• Will use a simpler approximation

• On time step , every where is updated

• Will compute some 

• On time step , update to is as follows:



Approximate TD( ) Updates

• On time step , update to is as follows:

• To calculate , first consider TD Error:

ᇲ ᇲ ᇲ

• Going to define ᇲ

• Intuitively, ௧ will be smaller for farther in past
• “Latest TD-error is less relevant farther back in time”



Eligibility Traces

ᇲ

• Eligibility traces implement this intuition
• “Latest TD-error is less relevant farther back in time”

• Eligibility traces keep track of how recent each state 
was visited 

• Determine how “eligible” a state is for newest learning 
update (using the TD-error)



Accumulating Traces

• Accumulating traces are a type of eligibility trace

• Let be the value of after steps
• Start with at beginning of each episode

• Update is as follows:
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Accumulating Traces

• Accumulating trace update is as follows:

 

• “Eligibility” of a state decays when not visited
• Determines impact of latest TD-error on a state



Accumulating Traces

• Accumulating trace update is as follows:

 

• If , for , else 
• Only updates the last state visited
• Still equivalent to TD(0) update

• If , still equivalent to TD(1) update as well



Eligibility Traces

• Accumulating traces are simple
• But have some issues

• Other types of traces as well
• Replacing traces
• Dutch traces

• See textbook for more details

• But can now consider accumulating traces in Sarsa



Sarsa( ) with Accumulating Traces



One-Step vs Multi-Step Sarsa



Off-Policy Control with Eligibility 
Traces

• When using off-policy methods, need to be more 
careful when using eligibility traces

• Consider 
• This is a two-step estimate of expected return when 

using the current policy for two-steps
• But is only an estimate for that specific policy

• In off-policy methods, those two actions might 
have been selected according to some other policy

• Can’t necessarily use them as estimate of target policy



Off-Policy Control with Eligibility 
Traces

• Consider 

• Can only use , if actions chosen would have 
been selected by the target policy

• Can’t “backpropagate” current TD-error to previous 
states past points where target and behaviour policy 
don’t coincide

• Implement this by resetting all eligibility traces to 0 
whenever action selected is not what the target 
policy would have selected



Q( with Accumulating Traces



Off-Policy vs On-Policy TD( )

• Off-policy methods are more complicated

• Often must reset eligibility traces in off-policy
• Decreases “how much is learned” per step



Efficient Eligibility Traces

• Earlier descriptions are naïve

• If have parallel machine, can quickly do eligibility 
trace updates 

• If not, will be expensive

• But eligibility of most states will be 0, many others 
will be close to 0

• Can usually get effective behaviour by only updating a 
few steps in the past (instead of all steps)



Summary

• Eligibility traces allow for middle ground between 
TD(0) and Monte Carlo updates

• Realized using eligibility traces
• Used accumulating traces as an example

• Introduced Sarsa( ) and Q( )


