Human-level control through deep
reinforcement learning

Presented by Bowen Xu

Acknowledgment

Slides from Jiang Guo available at:
http://ir.hit.edu.cn/~jguo/docs/notes/dgn-atari.pdf

Slides from Dong-Kyoung Kye available at: http://vi.snu.ac.kr/xe/

Towards General Artificial Intelligence

* Playing Atari with Deep Reinforcement Learning. ArXiv (2013)
* 7 Atari games
* The first step towards “General Artificial Intelligence”

* DeepMind got acquired by @Google (2014)

* Human-level control through deep reinforcement learning. Nature
(2015)

* 49 Atari games
* Google patented “Deep Reinforcement Learning”

Key Concepts

* Reinforcement Learning

* Markov Decision Process

* Discounted Future Reward
* Q-Learning

* Deep Q Network

* Exploration-Exploitation

* Experience Replay

* Deep Q-learning Algorithm

Reinforcement Learning

e Example: breakout (one of the Atari games)

oss 5 1 osbe 5 1 0 ob5 5 i o oS 5 1

* Suppose you want to teach an agent (e.g. NN) to play this game
 Supervised training (expert players play a million times) That’s not how we learn!
* Reinforcement learning

Reinforcement Learning

Supervised Learning Target label for each training example

Reinforcement Learning Sparse and time-delayed labels

Unsupervised Learning No label at all

Pong Breakout Space Invaders Seaquest Beam Rider

RL is Learning from Interaction

Environment

RL is like Life!

Markov Decision Process

Environment

SO, ao’ rl’ Sl, al, TZ, ---,Sn_l’ an_l’ rn, Sn

state X Terminal state
action

reward

State Representation

Think about the Breakout game
* How to define a state?

* Location of the paddle
e Location/direction of the ball
* Presence/absence of each individual brick N

Let’s make it more universal!

Screen pixels

Va | u e F U n Ctio n SO) aO; r]_; S1; al; rz, eny STL—1' an—]_; T'n, Sn

e Future reward
R = 7‘1+T‘2 +T'3+"'+ ™

Rt = T't ~+ T't_l_l + Tt+2 + -4 T'Tl
e Discounted future reward (environment is stochastic)

Ry =1+ yrpq + Vzrt+2 T+ et Vn_trn

=1+ V(41 TV (Teg2 + 7))
=1t + VR4

* A good strategy for an agent would be to always choose an action that maximizes
the (discounted) future reward

Value-Action Function

* We define a Q (s, a) representing the maximum discounted future
reward when we perform action a in state s:

Q(s¢,ar) = maxRyyq

* Q-function: represents the “Quality” of a certain action in a given state
* Imagine you have the magical Q-function
n(s) = argmax Q(s,a)
a

e T is the policy

Q-Learning

* How do we get the Q-function?
 Bellman Equation (D1/RE/AT)

Q(s,a) =r +ymax,Q(s’,a")

initialize Q[num states,num actions] arbitrarily
observe initial state s
repeat
select and carry out an action a
observe reward r and new state s’
Qls,al = Qls,a] + alr + y max,. Q[s',a']l] - Qls,a])
s = s'
until terminated

Value Iteration

Q-Learning

* In practice, Value lteration is impractical
 Very limited states/actions
e Cannot generalize to unobserved states

* Think about the Breakout game

 State: screen pixels

* Image size: 84 X 84 (resized)
* Consecutive 4 images 256531844 rows in the Q-table!

e Grayscale with 256 gray levels

s— Function [— Qs.a)

Function Approximator | ApproXimatorl.—targets or rrors

e Use a function (with parameters) to approximate the Q-function

Q(s,a;0) = Q*(s,a)
* Linear
* Non-linear: Q-network

S State \
/ Network 4“ » S State » Network

a Action

Q-value 1

Q-value 2

Q-value 3

Deep Q-Learning

= Stability issues with Deep RL

* Naive Q-learning oscillates or diverges with neural nets
1. Data is sequential
» Successive samples are correlated, non-i.i.d.
2. Policy changes rapidly with slight changes to Q-values
» Policy may oscillate
» Distribution of data can swing from one extreme to another
3. Scale of rewards and Q-values is unknown

» Naive Q-learning gradients can be large unstable when backpropagated

VI I .= Vehicle Intelligence
Laboratory

22

Deep Q-Learning

= Deep Q-Network provides a stable solution to deep value-based RL

1. Use experience replay
» Break correlations in data, bring us back to i.i.d. setting
» Learn from all past policies
> Using off-policy Q-learning
2. Freeze target Q-network
» Avoid oscillations
» Break correlations between Q-network and target
3. Clip rewards or normalize network adaptively to sensible range

» Robust gradients

VI I,_? Vehicle Intelligence
Laboratory

23

Stable Deep RL(1) : Experience Replay

* To remove correlations, build data-set from agent’s own experience
» Take action a; according to e-greedy policy
(Choose “best” action with probability 1- &, and selects a random action with probability &)
« Store transition (s¢, a;, 1441, S¢+1) iN replay memory D (Huge data base to store historical samples)
« Sample random mini-batch of transitions (s, a,r,s") from D

* Optimize MSE between Q-network and Q-learning targets, e.g.

2
Li(gi) — IEs,a,r,s'~D [(7" Ty rr}f}x Q(S,; a’; 0;) —Q(s, a; Hi))]

Yy o
Il

target

- Vehicle Intelligence
VI — Laboratory 24

Stable Deep RL(2) : Fixed Target Q-Network

» To avoid oscillations, fix parameters used in Q-learning target
« Compute Q-learning targets w.r.t. old, fixed parameters 6;
r+ y max Q(s',a’;6;)
* Optimize MSE between Q-network and Q-learning targets
L;(6) = Egqroron [(r +ymaxQ(s’,a’s0;) — Q(s, & 9i))2]

» Periodically update fixed parameters 6, < 6;

VI I.»,h Vehicle Intelligence
Laboratory

25

Stable Deep RL(3) : Reward / Value Range

= DQN clips the reward to [-1, +1]
» This prevents Q-values from becoming too large

= Ensures gradients are well-conditioned

VI .= Vehicle Intelligence
Laboratory

26

Stable Deep RL

DQN

Game \ﬂ_lith replay, _With replay, Wit.hout replay, V\fithout replay,
with target Q without target Q with target Q without target Q
Breakout 316.8 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 29.1
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894.4 822.6 1003.0 275.8
Space Invaders 1088.9 826.3 373.2 302.0

VI -m. Vehicle Intelligence
Laboratory

27

How to Train the Deep Q-Network
» Loss function :

2
L;(6;) = [Es,a,r,s’~l) [(T + ynllalx Q(s’,a’;0;) —Q(s,a; ei))]

= Differentiating the loss function w.r.t. the weights we arrive at following

gradient :

Vo, Li(0;) = Egqrsop Kr + y max Q(s’,a;60;7)—0Q(s, a; Hi)) Vo, Q(s,a; 0;)]

Do gradient descent:
Oiv1 =0 +a- -V Li(6;)

VI -m. Vehicle Intelligence
Laboratory

28

How to Train the Deep Q-Network

Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 0~ = 0
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s)
Fort=1,T do
With probability ¢ select a random action a,
otherwise select a; = argmax, Q(¢(s;).a: 0)
Execute action a, in emulator and observe reward r, and image x, | ,
Set s;4 1 =s$¢,a¢,%;41 and preprocess ¢, ; = (s 1)
Store transition (c/)t,a,,r,,c/)tﬂ) in D
Sample random minibatch of transitions ((/)j,a_,-,r,-,(/)j N 1) from D

rj if episode terminates at step j+ 1
Sety; = ~ _
i 1+ maxy Q(c/)j L1.a’3 0) otherwise

Perform a gradient descent step on (yf- —Q ((/)i’aﬁ 9))2 with respect to the
network parameters 0
Every C steps reset 0=0
End For
End For

VI -m. Vehicle Intelligence
Laboratory

29

How to Train the Deep Q-Network

During Training (9 2 1)

image attime t: x;
St = St-1Ae-1, Xt
preprocessed sequence

e = P(se)

Database D of samples <

1 million samples

m~mini-batch size

(¢kn, akn, Fin,Pkn+1)

‘ (¢k1, aki, ri,pri+1) ‘ (¢k2, akz, rz,pr2+1)

\

Do mini-batch gradientY
descent on parameter 0
for one step

Under training
Convolutional
Neural Network

Input game Parameter 8
image

Q(Sr,arl) & ai -

Q(St, Clrz) & ae

Add new datajsample to database

(¢t-1, a1, }‘t-1,¢t)

a; = argmax,Q (st a)
with probability 1-€
or
random action a,
with probability €

Q Q(Sr, Clrm) & am

)

Play the game for one step

30

How to Train the Deep Q-Network

After Training

O(s,as1) & as
Trained

Convolutional

Neural Network

%)
O(s,as2) & as2

Input game Parameter 6 T
Q(S, a.vn) & asn »

Play the game for one step

> a =argmax,Q(s,a)

L/ et poioence 31

DQN in Atari

Extended Data Table 1| List of hyperparameters and their values

i

The values of all the hyperparameters were selected by performing an informal search onthe games Pong, Breakout, Seaquest, Space Invaders and Beam Rider. We did not perform a systematic grid search owing

Hyperparameter Value Description

minibatch size 37 Number of training cases over which each stochastic gradient descent (SGD) update
is computed.

replay memory size 1000000 SGD updates are sampled from this number of most recent frames.

agent history length 4 The number of most recent frames experienced by the agent that are given as input to
the Q network.
The frequency (measured in the number of parameter updates) with which the target

target network update frequency 10000 network is updated (this corresponds to the parameter C from Algorithm 1).

discount factor 0.99 Discount factor gamma used in the Q-learning update.

action repeat 4 Repeat each action selected by the agent this many times. Using a value of 4 resuits

R in the agent seeing only every 4th input frame.

The number of actions selacted by the agent between successive SGD updates.

update frequency 4 Using a value of 4 results in the agent selecting 4 actions between each pair of
successive updates.

learning rate 0.00025 The leaming rate used by RMSProp.

gradient momentum 0.95 Gradient momentum used by RMSProp.

squared gradient momentum 0.85 Squared gradient (denominator) momentum used by RMSProp.

min squared gradient 0.01 Constant added to the squared gradient in the denominator of the RMSProp update.

initial exploration 1 Initial value of € in &-greedy exploration.

final exploration 01 Final value of € in E-greedy exploration.

final exploration frame 1000000 The number of frames over which the initial value of € is linearly annealed to its final
value.

replay start size 50000 A un|fprm randpm polllcy is run for this number of frames before learning starts and the
resulting experience is used to populate the replay memory.
Maximum number of “do nothing” actions to be performed by the agent at the start of

no-op max 30

an episode.

to the high computational cost, although it is conceivable that even better results could be obtained by systematically tuning the hyperparameter values.

Laboratory

e v'hicl. Ilunlllg'llw

32

DQN in Atari

Convolution Convolution Fully connected Fully connected
I\NO inpu!‘
| /] ° L2
| _--E / L2 @ ® \
/o & /m £\ '-
.'f I‘-"‘II ~a | / 1 \.‘ .
.-"J : ;:.:'E / i \\‘\. !
L]
L]
!

‘-. : M
LTINS /./‘él
TN
T
L 2
e

210x160 pixel
images with a O
128 color
palette

TIRj€ee iy a2
4 B4 B4 B BN B B e &« 3 S
CELEEEREE[)

A
®)

Vehicle Intelligence
VI Iﬁ Laboratory

The input to the neural network
consists of an 84x84x4 image

produced by the pre-processing

map ¢

Input state is stack of raw pixels

from last 4 frames

33

DQN in Atari

Convolution
w

fok

-D

210x160 pixel.
images with a ="
128 color
palette

VI I* Vehicle Intelligence
Laboratory

Convolution
w

i
PZ/INNS

A
i

NS
m)u]

didits

nﬁié’iéﬁ‘n‘n Uﬁaéah\n‘]

i

Fully connected

T
=
=3
8
‘3
e |
[17]
Q
=1
@
(o}

>
RERGARR:

H‘f‘m
Arrjeje iy u)->
EE EN EN ESN EX EN B B2
0] (@] (@] (@] (@) @] [©)] (&)

.ll‘\!llﬂ\llllﬂ.l.

T—

The first hidden layer convolves 32
filters of 8x8 with stride 4 with the
input image and applies a rectifier

nonlinearity.

The second hidden layer convolves
64 filters of 4x4 with stride 2.

This is followed by a third
convolutional layer that convolves
64 filters of 3x3 with stride 1

34

DQN in Atari

linear layer with a single output of

Convolution Convolution Fully connected Fully connected = The final hidden |ayer is fU”y-
| Nl connected and consists of 512
4 |/ o\ e \ EEBD g :
s / £ @ rectifier units.
[P N - A\
'/ / TRy # N
aD % \\\E // [] \& [] ,"'5 n .
J t \\¢ » The output layer is a fully-connected
Z ? { \[_~_
o o0 @&

210x160 plxel
images with a
128 color
palette

each valid action.

.
\\.
> 8 8508080888
°
‘-a.,
ke
+
O

./ = The number of valid actions varied

between 4 and 18 on the games

U/ e s oes 3

DQN result in Atari

Vi

Vehicle Intelligence
Laboratory

E 194
18
1T = . A —
" P A A 4
- /’_/\Vr V. .II . /_/
T 1
0 5 1 15 20 2 20 35 40 45 50 55 B0 & TO 75 B0 85 90 95 100 105 110 115 120
Frame #

b O r-m S - O r-wn S -

-y

Action-Values (Q)

. up
. DOWN

36

—
FUULAN

N

£ g
7 =
@ ®
B S
b= =
o (1~
'S (a'a]

"

%00S'y 000'L 009 00S [V 4 oog 002
L

Atari

IN

DQN result

o

[eAd|-UBLUNY Mojag

SAOE 1O [BAS}-UBLUNY Jf

Iﬁ‘i
‘ 'Ili'iilliiiilaiiﬁéﬁ-ﬁxlllli, |

Vil

| 5, BUINZSUOKY
d

le Intell
atory

[+
I

DQN result in Atari

“Seaquest” DQN gameplay

Before training

peaceful swimming

[https://youtu.be/SWXVJ1A0k6Q]

DQN result in Atari

Human-level control
through deep reinforcement
learning

[https://youtu.be/igXKQf2BOSE]

Conclusion

» Reinforcement learning provides a general-purpose framework for

A.l
= RL problems can be solved by end-to-end deep learning
» A single agent can now solve many challenging tasks

» Reinforcement learning + Deep learning

Agent can do stuff that maybe human don’t know how to program

VI I =, Yehicle Intelligence
Laboratory

40

