Planning
Software Demonstrations

CSC 2542 / Algorithms for Sequential Decision Making

Agenda

* PDDL
* (Very) basic PDDL w/ a toy-problem

* Planning systems
* What's available / How to pick?
* Demonstrations / How to use?

* Domains
* Where to find domains

* Other tools / tips

Toy Problem

Rules:
* The person can only move between
rooms that are adjacent (have door)

* The person can pick up gold only if in
the same room

e Goal: Collect gold and get back to R1

* Objects (Things we care about in our world):
* Rooms: R1, R2, R3, R4

TOy Problem _ PDDI_ * Person P1, Gold G1

* Predicate (Boolean properties of the objects):
R1
3

» at(what, where): object what in where

* adj(room1, room2): room1 is adjacent to room?2
* have(who, what): object who has object what

* |nitial state:
e at(pl,rl), at(gl,r2)
« adj(R1,R3), adj(R3,R1), adj(R3, R4)

i * Goal State:
* have(R1,G1)
e at(P1,R1)
* Actions (Ways of changing the world):

 move (who, from, to), e.g. move(p1,rl,r3)
* pick(who, what, where) e.g. pick(P1,G1,R1)

Other Instances

R1 R2

Other Instances

Other Instances

What changed?
e Same actions (move, pick-up)

e Same information we want to keep (where is person, where is gold)
e (same predicates)

* Different objects (more rooms)

» Different initial state (and possibly different goal)

e =>Decouple the instance to <Domain, Problem>
* Domain — Reusable

* Problem — Current instance information

Modeling in PDDL

 Two components: Domain and Problem(s)

* Domain
* Predicates
e Actions

* Problem
* Objects
* |nitial state
* Goal state

Domain and Problem

; Domain.pddl
(define (domain DOMAIN NAME)
(:requirements [:strips] [:equality] [:typing]
(:predicates (PREDICATE 1 NAME ?Al ?A2 ... ?AN)
(PREDICATE 2 NAME °?Al ?A2 ... ?AN)
c.l)
(:action ACTION 1 NAME
[c:parameters (?P1 ?P2 ... ?PN)]
[:precondition PRECOND FORMULA]
[:effect EFFECT FORMULA]

)
(:action ACTION 2 NAME ...)

[:adl])

; problem.pddl
(define (problem PROBLEM NAME)

(
(:
(:
(:

:domain DOMAIN NAME)

objects OBJ1 OBJ2 ... OBJ N)
init ATOM1 ATOM2 ... ATOM N)
goal CONDITION FORMULA)

Modeling Toy Problem in PDDL

(define (domain find-gold)
(:requirements :strips)

(:predicates (at ?what ?room) (define (problem find-gold-probleml)
(adj ?room-1 ?room-2) (:domain find-gold)
(have ?who ?what))

(:objects rl r2 r3 r4 gl pl)
(:action walk

:parameters (?who ?from ?to) (:init (adj rl r3) (adj r3 rl)
:precondition (and (at ?who ?from) (adj r3 r4) (adj r4 r3)
(adj ?from ?to)) (adj r4 r2) (adj r2 r4)
:effect (and (not (at ?who ?from)) (at gl r2) (at pl rl)
(at ?who ?to))))
(:action pick-gold (:goal (and (have pl gl)
:parameters (?who ?what ?where) (at pl rl)))
:precondition (and (at ?who ?where))

(at ?what ?where))
:effect (and (have ?who ?what)
(not (at ?what ?where))))

Using a planner to solve the problem

e http://planning.domains/

* Online service providing “Solver on the Cloud”
* No need to compile, install, and run a local planner

* Problems can be posted to solver as JSON over HTTP
* Easy from Python / JS

* Online PDDL editor

e Can type PDDL on website and run planner

* [Demonstration]

Modeling Toy Problem in PDDL — 15t Attempt

(define (domain find-gold)
(:requirements :strips)

(define (domain find-gold)
(:requirements :strips)

(:predicates (at ?what ?room)
(adj ?room-1 ?room-2)
(have ?who ?what)
(is—-room ?who)
(1s-person ?who)
(is-gold ?what))

Revise PDDL - Gold can’t walk
* Add “is_x” predicates to verify the
object we apply actions on

* Run planner again

(:action move

:parameters (?who ?from ?to)

:precondition (and (is-person ?who)
(1s—-room ?from)
(is-room ?to)
(at ?who ?from)
(adj ?from ?to))

:effect (and (not (at ?who ?from))

(at ?who ?to)))

(:action pick-gold

:parameters (?who ?what ?where)

:precondition (and (is-person ?who)
(is-gold ?what)
(is-room ?where)
(at ?who ?where)
(at ?what ?where))

:effect (and (have ?who ?what)

(not (at ?what ?where))))

(define (domain find-gold) (:action move

(:requirements :strips) :parameters (?who ?from ?to)
:precondition (and (is-person ?who)
(:predicates (at ?what ?room) (is-room ?from)
(adj ?room-1 ?room-2) (is-room ?to)
(have ?who ?what) (at ?who ?from)
(is—-room ?who) (adj ?from ?to))
(is-person °?who) :effect (and (not (at ?who ?from))
(is-gold ?what)) (at ?who ?to)))

(:action pick-gold

_ :parameters (?who ?what ?where)
Move P]., Rl, R3 :precondition (and (is-person ?who)
Move P1,R3,R4 — PlgoestoR2 (1s-gold ?what)

(is-room ?where)

Move P]-; R41 R2 | (at ?who ?where)
PickUp P1, G1, R2 —— P1pickgold in R1 crect (and (b _Ea; ?v:h:tt;’where))

— :effec an ave ?who ?wha
Move P1,R2, R4 (not (at ?what ?where))))
Move P1, R4, R3 — P1 goes toR1)

Move P1, R3,R1

Planners

e Fast Forward
e https://fai.cs.uni-saarland.de/hoffmann/ff.html

* Fast Downward
e http://www.fast-downward.org

* Planner on the cloud
e http://planning.domains/

 Madagascar (SAT-based planner)

* https://users.ics.aalto.fi/rintanen/satplan.html

Finding the right planner

* |PC — International Planning Competition
e https://helios.hud.ac.uk/scommv/IPC-14/

* Different Tracks
e Deterministic Track
* Learning Track
* Uncertainty / Probabilistic
* Unsolvability

e Different Goals:
e Solution Quality

 Time to Solution
e CPU %

Domains (and Problems)

* |PC — International Planning Competition

* http://icaps-conference.org/index.php/main/competitions
* https://helios.hud.ac.uk/scommv/IPC-14/

 http://planning.domains
* https://bitbucket.org/planning-researchers/classical-domains

* Fast Downward benchmarks repository
e https://bitbucket.org/aibasel/downward-benchmarks/src

e Fast Forward domains
e https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html

Plan Validation using VAL

* VAL - The Automatic Validation Tool For PDDL, including PDDL3 and PDDL+
* Validate a plan(s) with the domain and problem files
* If plan is invalid — offer a Plan Repair Advice

e Can produce latex with validation details, graphs, gantt charts, etc.

* Usage:
* validate [options] domain.pdd| problem.pddl planl.pddl plan2.pddl

e https://github.com/KCL-Planning/VAL
e http://www.inf.kcl.ac.uk/staff/planningtmp/software/val.html

Software demonstration

* Running IPC planner w/ IPC domain
* Validating plan

* IPC domains on planning.domains

PDDL Tools

* IDEs - syntax highlights, etc
 MyPDDL — for Sublime Text
* http://pold87.github.io/myPDDL/

 PDDL mode for Emacs
* https://www.emacswiki.org/emacs/pddl-mode.el

* Planning systems development
e Pyperplan (https://bitbucket.org/malte/pyperplan) - Python
* PDDL4J (https://github.com/pellierd/pdd|4j) - Java
o LAPKT (http://lapkt.org) - C++/Python

Other Good General Resources

* Automated Planning Course
(Jonas Kvarnstrom, Linkoping University)

* https://www.ida.liu.se/~TDDD48/index.en.shtml

* A Beginner's Introduction to Heuristic Search Planning
(Malte Helmert and Gabriele Roger, AAAI-15)

* http://ai.cs.unibas.ch/misc/tutorial aaai2015/

 Patrik Haslum’s Planning Resources
* http://users.cecs.anu.edu.au/~patrik/#resources

