
2016-10-13

1

Bandit Algorithms and
Monte Carlo Methods

Rick Valenzano and Sheila McIlraith

Outline

• General assignment questions

• Recap of where we are

• Finish off bandits
• UCB, incremental averaging, tracking

• Reinforcement Learning

• Monte Carlo methods
• On-policy prediction and control

Acknowledgements

• Images from the RL book

• Based on slides by David Silver and Adam White

Assignment

• Grace days

• Questions?

2016-10-13

2

Recap

• Building system to achieve some objective
• Through some extended interaction with the

environment

• Try to model it, then pick an appropriate tool for
that model

Recap

• Is the problem deterministic, fully observable, and
with a possible finite transition function?

• Try modelling it as a classical planning problem
• Model it in PDDL and try an off-the-shelf planner
• Develop a problem specific heuristic, build a system

2016-10-13

3

Recap

• Run A*

• Too big for A*? Time constraints?
• Try suboptimal algorithms like WA* or GBFS
• Just need to figure out good settings for it

Recap

• Fully observable, with discrete and stochastic
actions with known transition probabilities?

• Try modelling it as an MDP

Recap

• Model it as an MDP

• Solve using value or policy iteration

• So far, we are assuming we can maintain state value
functions in a table

• Tabular Methods

2016-10-13

4

Tabular Methods

0

0

0

0

0

ܸ
Tabular Methods

6

0

6

8

10

ܸ = ∗ݒ

Recap

• To use MDP methods, need a complete model

• But what if we don’t know everything?

• What if we don’t how reward function works?
• Single state problem is an MDP
• Finish this today

Preview

• What if the underlying MDP has multiple states?
• Next two lectures

• What if the state-space is too large?
• Tabular methods aren’t possible
• Need approximation methods (next week)

2016-10-13

5

Multi-Armed Bandits

• There are ݊ actions ܣ = {ܽଵ, … , ܽ௡}

• All actions applicable on all of discrete time steps
• Infinite time steps 1, 2, 3, …
• On each time step, pick one to execute. Denoted ܣ௧

• ∗ݍ ,ݏ ܽ௜ = ∗ݍ ܽ௜ = E[ܴ௧|ܽ௜]

• Agent is trying to maximize total reward over time

Greedy Policy

• Let ܳ௧ ܽ௜ be the average value of ܽ௜ after ݐ steps

• On each step, choose the action with the best
average return thus far

௧ାଵܣ = argmax௔∈஺ܳ௧(ܽ)

• What are the issues with this approach?

ࣕ-Greedy Policy

• Don’t always pick the best looking action
• May not actually be the best

ࣕ-greedy policy:
With probability 1 − ߳ :

௧ାଵܣ = argmax௔∈஺ܳ௧(ܽ)
With probability ߳:

௧ାଵܣ is selected randomly from ܣ

10-Armed Bandit Testbed

• Made 2,000 such problems

2016-10-13

6

10-Armed Bandit Results 10-Armed Bandit Results

Exploration vs. Exploitation

• When select greedily, agent is exploiting its information

• When selects randomly, it is exploring

• If we exploit to much, can get stuck with suboptimal values

• If we explore too much, we may be sacrificing a lot of
reward that we could have gotten

• Need to balance between the two
• A central dilemma in reinforcement learning

ࣕ-Greedy Policy

• Consider case where 10-arms and ߳ = 0.1
• How often will it select best arm in the limit?

2016-10-13

7

ࣕ-Greedy Policy

• Consider case where 10-arms and ߳ = 0.1
• How often will it select best arm in the limit?
• With probability 0.91

• Can decrease ߳ over time to converge to right value
• Must satisfy certain conditions
• Requires some knowledge about reward function

• Uniform exploration also seems odd

Action-Values

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 1

Re
w

ar
d

Co
un

t

Reward

Arm 1 Arm 2 Arm 3

Action-Value Uncertainty Upper Confidence Bound (UCB)

Estimate a value ௧ܷ(ܽ௜) for ܽ௜ such that

∗ݍ ܽ௜ ≤ ܳ௧ ܽ௜ + ௧ܷ(ܽ௜)

with high probability.

2016-10-13

8

UCB Algorithm

Estimate a value ௧ܷ(ܽ௜) for ܽ௜ such that

௧ܣ = argmax௔∈஺ ܳ௧ ܽ + ܿ
log ݐ

௧ܰ(ܽ)

௧ܰ(ܽ) is the number of times ܽ was selected
ܿ > 0 is a parameter that determines exploration

UCB vs. ࣕ-Greedy (and others)

Calculating Average

Standard way to calculate average:

ܳ௧ ܽ =
1

௧ܰ(ܽ)
 ⋅ ෍ ܴ௜

௜∈௧(௔)

In practice, keep track of ௧ܰ(ܽ) and the sum
• Some floating point issues

Calculating Average

Standard way to calculate average:

ܳ௧ ܽ =
1

௧ܰ(ܽ)
 ⋅ ෍ ܴ௜

௜∈௧(௔)

• Linear combination of ܴ௧ values
• All rewards have same weight of 1/ ௧ܰ(ܽ)
• Evidence at time ݐ = 0 same as at ݐ = 1,000,000

2016-10-13

9

Stationary vs. Non-Stationary

• Assumption that there is an underlying MDP
• Transition function is not changing
• Stationary problem

• But environments change over time
• Non-stationary
• Recent evidence is more important

Incremental Average

Incremental way to calculate average:

ܳ௧ାଵ ܽ = ܳ௧ ܽ +
1

௧ܰ(ܽ)
⋅ ܴ௧ାଵ − (ܽ)௧ݍ

In practice, keep track of ௧ܰ(ܽ) and ݍ௧(a)
• More robust for floating point arithmetic
• Flexible

Tracking

Use parameter ߙ ∈ (0,1]

ܳ௧ାଵ ܽ = ܳ௧ ܽ + ߙ ⋅ ܴ௧ାଵ − (ܽ)௧ݍ

If ܽ is always picked, will look like the following:

ܳ௧ାଵ ܽ
 = 1 − ߙ ௧ ⋅ ܴଵ + 1 − ߙ ௧ିଵ + ⋯ + ߙ ⋅ ܴ௧ାଵ

Recent evidence is more important

Tracking

Use parameter ߙ௧(ܽ) ∈ (0,1]

ܳ௧ାଵ ܽ = ܳ௧ ܽ + (ܽ)௧ߙ ⋅ ܴ௧ାଵ − ܳ௧(ܽ)

Incremental average uses

௧ߙ ߙ =
1
ݐ

2016-10-13

10

Tracking

Use parameter ߙ௧(ܽ) ∈ (0,1]

ܳ௧ାଵ ܽ = ܳ௧ ܽ + (ܽ)௧ߙ ⋅ ܴ௧ାଵ − ܳ௧(ܽ)

If stationary, ܳ converge to the true ݍ∗ assuming
(ܽ)௧ߙ converges to 0 “quickly enough”

State-Value Updates

• Will often use updates of the following

NewEstimate =
LastEstimate + StepSize ⋅ (Target – LastEstimate)

• Target is what we want
• Or an estimate (i.e. sample) of what we want

Bandit Recap

• Don’t know the reward function

• Must balance exploit-explore balance

• ߳-greedy, UCB as solution techniques

• Incremental average calculation

• Stationary vs non-stationary updates

Beyond Bandits

• What if there are more than one state?

• What if we don’t even know the transition
function?

• For this class, we will at least assume we know the
state-space

2016-10-13

11

Reinforcement Learning

• Learn from interacting with environment
• Could be an actual environment (like a robot)
• Or a partially specified model

• Take an action, get a reward, and new state

• Learning to map situations to actions (policy)
• But without a full model
• Still trying to maximize the reward

Reinforcement Learning

• Learner (agent) not told how to act
• No teacher, no labels on training examples
• At least in “pure” form

• “Trial and error” learning

RL Tabular Methods

• Let’s assume we can enumerate all possible states

• Can figure out applicable actions in any state
• Just don’t know resulting reward, or even transition is

• Just as in DP, consider two problems:
1. Prediction/Evaluation: how well will a policy do?
2. Control: find a good policy

Monte Carlo Methods
• Estimate value function using sample episodes

7.5

3

-1.2

0.5

11

or

10
5
3
0

-2.0
0
0
1

11
11

ଵݏ

ଶݏ

ଷݏ

ସݏ

ହݏ

ଵݏ

ଶݏ

ଷݏ

ସݏ

ହݏ

ܽଵ
ܽଶ
ܽଵ
ܽଶ

ܽଵ
ܽଶ
ܽଵ
ܽଶ
ܽଵ
ܽଶ

ܸ ܳ

2016-10-13

12

Monte Carlo Methods

• Estimate value function using sample episodes

• Suitable for episodic tasks
• No matter what actions we take, episode will terminate

at some point (could take a long time though)

• Will update on an episode-by-episode basis
• Not action-by-action

Monte Carlo Prediction

• Recall that ܩ௧ is the return we get during an
episode after time ݐ

గݒ ݏ = Eగ[ܩ௧|ܵ௧ = [ݏ

• To estimate ݒగ(ݏ), run episodes starting in ݏ that
use policy ߨ, and average returns seen

Monte Carlo Prediction

• After three episodes, estimate is …

5
3

7

Monte Carlo Prediction

• After three episodes, estimate is … గܸ(ݏ) = 5

5
3

7

2016-10-13

13

Monte Carlo Prediction

• Also have two episodes where B was visited
• Can update those as well
• Every episode allows for updates to every visited state

5
3

7

Monte Carlo Backup

First-Visit Monte Carlo Prediction Monte Carlo Prediction

• First-visit only updates a state at most once per
episode

• Even if there is “loopy” behaviour

• Can also do every-visit where we update for all
visits to the state

• Both techniques converge to ݒగ(ݏ) for ݏ if ݏ is
visited infinitely often in the limit

• May need exploration to guarantee this

2016-10-13

14

Exploring Starts

• If ߨ is deterministic, only try one action per state
• May never reach many states if start in the same place

• Exploring starts ensure all states are visited
infinitely often in order to guarantee convergence

• Sample episodes such that we start in every state
infinitely often

Evaluating State-Action Pairs

• Recall that in DP, could compute ݍగ(ݏ, ܽ) using a
lookahead of ݒగ to the possible transitions

• Lookahead weighted by the probability of each outcome
• Needed to know transition probabilities

• Now we don’t have transition probabilities
• Often want ݍగ since we make decisions based on it
• So we usually explicitly compute ݍగ instead of ݒగ

Evaluating State-Action Pairs

• Can modify first-visit and every-visit MC to update
state-action pairs instead

• Both converge if every pair is visited infinitely often

• Exploring starts for state-action pairs
• Start with every state-action pair infinitely often

MC vs. DP

• In MC, only look at outcome that happened
• Don’t look at all outcomes like in DP
• But means we require exploration

• Do not bootstrap in MC
• DP updates ݒగ estimates based on other ݒగ estimates
• MC only updates based on returns

• Time to update a state in MC does not depend on
the number of states or even transitions

• No sweeping like in DP

2016-10-13

15

RL Control

• Coming up with a good policy
• Without model, must do it through experience

• Techniques can be viewed as instances of
Generalized Policy Iteration

Generalized Policy Iteration

Policy Improvement Theorem

If we have computed ݒగ, and ݍగ ,ݏ ܽ > then the ,(ݏ)గݒ
policy that chooses ܽ will be better.

Or

௞ାଵߨ ≥ ௞ߨ

if and only if

,ݏ∀ గೖݍ
,ݏ ௞ାଵߨ ݏ ≥ గೖݒ

(ݏ)

Monte Carlo Control

• Alternate between policy evaluation and greedy
policy improvement

• Just as in DP, don’t need to do full evaluation
before improvement

• Can stop if changes are small
• Or even just after each episode

2016-10-13

16

Monte Carlo Control with ES Exploration for MC Control

• Exploring starts is a strong requirement
• Not realistic in some cases (like a robot)

• But need to visit every pair to ensure convergence

• Can do this with soft policies
• ߨ ܽ ݏ > 0 for all ݏ and ܽ

• ߳-greedy ensures this

Exploration for MC Control

• Exploring starts is a strong requirement
• Not realistic in some cases (like a robot)

• But need to visit every pair to ensure convergence

• Can do this with soft policies
• ߨ ܽ ݏ > 0 for all ݏ and ܽ

• ߳-greedy ensures this
• Any action sequence of length ݀ starting in ݏ has ≥ ߳ௗ

probability of happening

MC Control with ࣕ-Soft Policies

2016-10-13

17

GPI and ࣕ-Greedy Policies

• “Greedy” policy improvement, will now result in
another ߳-greedy policy

• Will now converge to the optimal ߳-greedy policy
• Like finding the optimal policy in a new domain where

don’t always get the action that you want

GPI and ࣕ-Greedy Policies

• This control approach is an example of on-policy
learning

• Using the learnt policy to generate episodes

• Also have off-policy learning techniques
• Use a behaviour policy to generate episodes
• Learning the target policy

Off-Policy Learning

• Behaviour policy is exploratory, ensures that all
state-action pairs are tried

• Target policy can be deterministic
• Means convergence is possible to optimal policy
• Not just optimal ߳-soft policy

Off-Policy Learning

• Roughly learn less per episode

• Can only learn from parts of the episode where the
behaviour and target policies coincide

• Or at least, the degree that they are similar

• Can be slower, and harder to generalize

2016-10-13

18

Why Use Off-Policy Learning?

• Can do massively parallel learning
• Learning about multiple policies at once

• Can learn multiple policies at once

• Can use episodes provided by a human
• Demonstrating good behaviour

• Learning from batch of episodes

Monte Carlo Recap

• RL is learning from experience
• Trial and error

• Monte Carlo methods predict using what happened
• Based on episode results, does not bootstrap

• Need to ensure everything is trying often enough

• Monte Carlo control using GPI in a greedy way
• On-policy learns best ߳-soft policy
• Off-policy can learn best policy, but “learns less” per epsiode

