Bandit Algorithms and
Monte Carlo Methods

Rick Valenzano and Sheila Mcllraith

Outline

* General assignment questions
* Recap of where we are

* Finish off bandits
* UCB, incremental averaging, tracking

* Reinforcement Learning

* Monte Carlo methods
¢ On-policy prediction and control

Acknowledgements

* Images from the RL book

* Based on slides by David Silver and Adam White

Assignment

* Grace days

* Questions?

2016-10-13

Recap

* Building system to achieve some objective

* Through some extended interaction with the
environment

* Try to model it, then pick an appropriate tool for
that model

Recap

* |s the problem deterministic, fully observable, and
with a possible finite transition function?

* Try modelling it as a classical planning problem
* Model it in PDDL and try an off-the-shelf planner
* Develop a problem specific heuristic, build a system

2016-10-13

Recap

* Run A*

* Too big for A*? Time constraints?
* Try suboptimal algorithms like WA* or GBFS
* Just need to figure out good settings for it

Recap

* Fully observable, with discrete and stochastic
actions with known transition probabilities?

* Try modelling it as an MDP

Facebook
R=-1

Facebook
R=-1

Study
R=+10

Recap

* Model it as an MDP
* Solve using value or policy iteration

* So far, we are assuming we can maintain state value
functions in a table
* Tabular Methods

2016-10-13

Tabular Methods

O |J]O0O]|]O|O]| O

Tabular Methods
Facfbfmk wafals) fory =1 V = v*

Study
R=+10

qx=10

10

Recap
* To use MDP methods, need a complete model
* But what if we don’t know everything?

* What if we don’t how reward function works?
* Single state problem is an MDP
* Finish this today

Preview

* What if the underlying MDP has multiple states?
* Next two lectures

* What if the state-space is too large?
 Tabular methods aren’t possible
* Need approximation methods (next week)

2016-10-13

Multi-Armed Bandits

* There are n actions A = {ay, ..., a,}

* All actions applicable on all of discrete time steps
¢ Infinite time steps 1, 2, 3, ...
* On each time step, pick one to execute. Denoted A;

*q"(s,a;) = q"(a;) = E[R¢]a;]

* Agent is trying to maximize total reward over time

Greedy Policy
* Let Q;(a;) be the average value of a; after t steps

* On each step, choose the action with the best
average return thus far

Apyq = argmaxge Qi (a)

* What are the issues with this approach?

€-Greedy Policy

* Don’t always pick the best looking action
* May not actually be the best

e-greedy policy:
With probability (1 — €):
Apyq = argmaxgeq Qe (a)
With probability €:
A¢ 1 is selected randomly from A

10-Armed Bandit Testbed

Reward ~ , _ L2+
distribution

Action

* Made 2,000 such problems

2016-10-13

10-Armed Bandit Results

& =0 (greedy)

Average
reward

0.5

T T T 1
1 250 500 750 1000

Steps

100% _,

80% |

% 60%
Optimal

action 0% |

20% -

0%

10-Armed Bandit Results

&= 0(greedy)

2‘50 560
Steps

T
750

1
1000

Exploration vs. Exploitation

* When select greedily, agent is exploiting its information
* When selects randomly, it is exploring
* If we exploit to much, can get stuck with suboptimal values

« If we explore too much, we may be sacrificing a lot of
reward that we could have gotten

* Need to balance between the two
* A central dilemma in reinforcement learning

€-Greedy Policy

* Consider case where 10-arms and € = 0.1
* How often will it select best arm in the limit?

2016-10-13

€-Greedy Policy

* Consider case where 10-arms and € = 0.1
* How often will it select best arm in the limit?
* With probability 0.91

* Can decrease € over time to converge to right value
* Must satisfy certain conditions
* Requires some knowledge about reward function

* Uniform exploration also seems odd

Action-Values

14

12 Arm 1 Arm 2 Arm 3

10

Reward Count

Action-Value Uncertainty

Q(a)

Upper Confidence Bound (UCB)

Estimate a value U, (a;) for a; such that
q"(a;) < Q¢(ay) + U(ay)

with high probability.

2016-10-13

UCB Algorithm

Estimate a value U, (a;) for a; such that

logt
Ne(a)

A; = argmaxgeq [Q:(a) + ¢

N¢(a) is the number of times a was selected
¢ > 0is a parameter that determines exploration

UCB vs. e-Greedy (and others)

UcCB_-——— greedy with
_— \ optimistic
\initialization

\\a=0.1

Average 3| ,.greedy
reward

: gradient
over first i3 bandit
1000 steps
14
1
1128 164 132 116 18 14 12 1 2 4
e/a/c/ Qo

Calculating Average

Standard way to calculate average:

Nia) Z ki

iet(a)

Qc(a) =

In practice, keep track of N;(a) and the sum
* Some floating point issues

Calculating Average

Standard way to calculate average:

Nia) Z ki

iet(a)

Qc(a) =

* Linear combination of R; values
« All rewards have same weight of 1/N;(a)
* Evidence at time t = 0 same asatt = 1,000,000

2016-10-13

Stationary vs. Non-Stationary

* Assumption that there is an underlying MDP
* Transition function is not changing
« Stationary problem

* But environments change over time
* Non-stationary
* Recent evidence is more important

Incremental Average

Incremental way to calculate average:

1
Qr+1(a) = Q¢(a) + N (@) (Res1 — qe(a))

In practice, keep track of N;(a) and q,(a)
* More robust for floating point arithmetic
* Flexible

Tracking
Use parameter a € (0,1]
Qe+1(@) = Qe (@) + @ - (Rep1 — q¢(@))
If a is always picked, will look like the following:

Qe+1(a)
=(1-a) Ri+(Q-a)" '+ +a Ry

Recent evidence is more important

Tracking
Use parameter a;(a) € (0,1]
Qr+1(a) = Qc(a) + ar(a) - (Re1 — Qc(a))

Incremental average uses

1
a(a) = T

2016-10-13

Tracking
Use parameter a;(a) € (0,1]

Qt+1(a) = Q¢(a) + ar(a) - (Rep1 — Qr(@))

If stationary, Q converge to the true g, assuming
a;(a) converges to 0 “quickly enough”

State-Value Updates
* Will often use updates of the following

NewEstimate =
LastEstimate + StepSize - (Target — LastEstimate)

* Target is what we want
* Or an estimate (i.e. sample) of what we want

Bandit Recap
* Don’t know the reward function
* Must balance exploit-explore balance
* e-greedy, UCB as solution techniques
* Incremental average calculation

* Stationary vs non-stationary updates

Beyond Bandits
* What if there are more than one state?

* What if we don’t even know the transition
function?

* For this class, we will at least assume we know the

state-space

2016-10-13

10

Reinforcement Learning

* Learn from interacting with environment
* Could be an actual environment (like a robot)
* Or a partially specified model

* Take an action, get a reward, and new state

* Learning to map situations to actions (policy)
* But without a full model
« Still trying to maximize the reward

Reinforcement Learning

* Learner (agent) not told how to act
* No teacher, no labels on training examples
* At least in “pure” form

* “Trial and error” learning

RL Tabular Methods

* Let’s assume we can enumerate all possible states

* Can figure out applicable actions in any state
* Just don’t know resulting reward, or even transition is

* Just as in DP, consider two problems:
1. Prediction/Evaluation: how well will a policy do?
2. Control: find a good policy

Monte Carlo Methods

* Estimate value function using sample episodes

si|75]Y O
Sz2| 3 o S2 Z; 8
53|12 5. @[20
3ax 0
S410.5 Sa g; 2
Ss| 11 Ss 33%

Q

2016-10-13

11

Monte Carlo Methods

* Estimate value function using sample episodes

* Suitable for episodic tasks

* No matter what actions we take, episode will terminate
at some point (could take a long time though)

* Will update on an episode-by-episode basis
* Not action-by-action

Monte Carlo Prediction

* Recall that G; is the return we get during an
episode after time t

v (s) = Ex[GelSe = 5]

* To estimate v,;(s), run episodes starting in s that
use policy i, and average returns seen

Monte Carlo Prediction

Q@2+ - 2]
(= ald

O o o 2] 7

* After three episodes, estimate is ...

1

Monte Carlo Prediction

Q@2+ - 2]
(= ald

O o 2] 7

* After three episodes, estimate is ... V;(s) = 5

1

2016-10-13

12

Monte Carlo Prediction

O ORI R

O . 277

* Also have two episodes where B was visited
¢ Can update those as well
« Every episode allows for updates to every visited state

Monte Carlo Backup

First-Visit Monte Carlo Prediction

Initialize:
7 < policy to be evaluated
V < an arbitrary state-value function
Returns(s) < an empty list, for all s € 8

Repeat forever:
Generate an episode using m
For each state s appearing in the episode:
G < return following the first occurrence of s
Append G to Returns(s)
V(s) + average(Returns(s))

Monte Carlo Prediction

* First-visit only updates a state at most once per
episode
* Even if there is “loopy” behaviour

* Can also do every-visit where we update for all
visits to the state

* Both techniques converge to v, (s) for s if s is
visited infinitely often in the limit
* May need exploration to guarantee this

2016-10-13

13

Exploring Starts

* If it is deterministic, only try one action per state
* May never reach many states if start in the same place

* Exploring starts ensure all states are visited
infinitely often in order to guarantee convergence

* Sample episodes such that we start in every state
infinitely often

Evaluating State-Action Pairs

* Recall that in DP, could compute g (s, a) using a
lookahead of v;; to the possible transitions
* Lookahead weighted by the probability of each outcome
* Needed to know transition probabilities

* Now we don’t have transition probabilities
* Often want g, since we make decisions based on it
* So we usually explicitly compute q,; instead of v,

Evaluating State-Action Pairs

* Can modify first-visit and every-visit MC to update
state-action pairs instead
* Both converge if every pair is visited infinitely often

* Exploring starts for state-action pairs
« Start with every state-action pair infinitely often

MC vs. DP

* In MC, only look at outcome that happened
* Don’t look at all outcomes like in DP
* But means we require exploration

* Do not bootstrap in MC
* DP updates v, estimates based on other v,; estimates
* MC only updates based on returns

* Time to update a state in MC does not depend on
the number of states or even transitions
* No sweeping like in DP

2016-10-13

14

RL Control

* Coming up with a good policy
* Without model, must do it through experience

* Techniques can be viewed as instances of
Generalized Policy Iteration

Generalized Policy Iteration

evaluation
Vvt
T
starting v* \%
Var T+ st—>greedy(V)
improvement
et .
.
Policy evaluation Estimate v, .
e.g. lterative policy evaluation .
Policy improvement Generate 7’ > 7 % %
7 S a—
e.g. Greedy policy improvement T aa— \%

Policy Improvement Theorem

If we have computed v, and q;(s, a) > v, (s), then the
policy that chooses a will be better.

Or

Myt1 = Mg
if and only if

VS, Gy (5, 41 (5)) 2 v, (5)

Monte Carlo Control

* Alternate between policy evaluation and greedy
policy improvement

* Just as in DP, don’t need to do full evaluation
before improvement
* Can stop if changes are small
* Or even just after each episode

2016-10-13

15

Monte Carlo Control with ES

Initialize, for all s € 8, a € A(s):
Q(s,a) «+ arbitrary
m(s) « arbitrary
Returns(s,a) < empty list

Repeat forever:
Choose Sy € 8§ and Aj € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ay, following 7
For each pair s, a appearing in the episode:
G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) « average(Returns(s,a))
For each s in the episode:
7(s) + argmax, Q(s,a)

Exploration for MC Control

* Exploring starts is a strong requirement
* Not realistic in some cases (like a robot)

* But need to visit every pair to ensure convergence

* Can do this with soft policies
e m(als) > 0forallsand a

* e-greedy ensures this

Exploration for MC Control

* Exploring starts is a strong requirement
* Not realistic in some cases (like a robot)

* But need to visit every pair to ensure convergence

* Can do this with soft policies
* m(als) > O0forallsand a

* e-greedy ensures this

* Any action sequence of length d starting in s has > €
probability of happening

MC Control with e-Soft Policies

Initialize, for all s € §, a € A(s):
Q(s,a) < arbitrary
Returns(s,a) « empty list
m(als) < an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s,a appearing in the episode:
G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) « average(Returns(s, a))
(c) For each s in the episode:
A* + argmax, Q(s,a)
For all a € A(s):
1—e+e/|A(s)| ifa=A*
mials) + { ¢/JA(s)| i a# A*

2016-10-13

16

GPI and e-Greedy Policies

* “Greedy” policy improvement, will now result in
another e-greedy policy

* Will now converge to the optimal e-greedy policy

* Like finding the optimal policy in a new domain where
don’t always get the action that you want

GPI and e-Greedy Policies

* This control approach is an example of on-policy
learning
* Using the learnt policy to generate episodes

* Also have off-policy learning techniques
* Use a behaviour policy to generate episodes
* Learning the target policy

Off-Policy Learning

* Behaviour policy is exploratory, ensures that all
state-action pairs are tried

* Target policy can be deterministic
* Means convergence is possible to optimal policy
* Not just optimal e-soft policy

Off-Policy Learning

* Roughly learn less per episode

* Can only learn from parts of the episode where the
behaviour and target policies coincide
* Or at least, the degree that they are similar

* Can be slower, and harder to generalize

2016-10-13

17

Why Use Off-Policy Learning?

* Can do massively parallel learning
* Learning about multiple policies at once

* Can learn multiple policies at once

* Can use episodes provided by a human
* Demonstrating good behaviour

* Learning from batch of episodes

Monte Carlo Recap

* RLis learning from experience
* Trial and error

* Monte Carlo methods predict using what happened
* Based on episode results, does not bootstrap

* Need to ensure everything is trying often enough

* Monte Carlo control using GPI in a greedy way
* On-policy learns best e-soft policy
* Off-policy can learn best policy, but “learns less” per epsiode

2016-10-13

18

