Bandit Algorithms and Monte Carlo Methods

Rick Valenzano and Sheila McIlraith

Outline

- General assignment questions
- Recap of where we are
- Finish off bandits
 - UCB, incremental averaging, tracking
- Reinforcement Learning
- Monte Carlo methods
 - On-policy prediction and control

Acknowledgements

- Images from the RL book
- Based on slides by David Silver and Adam White

Assignment

- Grace days
- Questions?

- Building system to achieve some objective
 - Through some extended interaction with the environment

• Try to model it, then pick an appropriate tool for that model

- Is the problem deterministic, fully observable, and with a possible finite transition function?
- Try modelling it as a classical planning problem
 - Model it in PDDL and try an off-the-shelf planner
 - Develop a problem specific heuristic, build a system

- Run A*
- Too big for A*? Time constraints?
 - Try suboptimal algorithms like WA* or GBFS
 - Just need to figure out good settings for it

- Fully observable, with discrete and stochastic actions with known transition probabilities?
- Try modelling it as an MDP

- Model it as an MDP
- Solve using value or policy iteration
- So far, we are assuming we can maintain state value functions in a table
 - Tabular Methods

Tabular Methods

Tabular Methods

- To use MDP methods, need a complete model
- But what if we don't know everything?
- What if we don't how reward function works?
 - Single state problem is an MDP
 - Finish this today

Preview

- What if the underlying MDP has multiple states?
 - Next two lectures
- What if the state-space is too large?
 - Tabular methods aren't possible
 - Need approximation methods (next week)

Multi-Armed Bandits

- There are *n* actions $A = \{a_1, \dots, a_n\}$
- All actions applicable on all of discrete time steps
 - Infinite time steps 1, 2, 3, ...
 - On each time step, pick one to execute. Denoted A_t
- $q^*(s, a_i) = q^*(a_i) = E[R_t|a_i]$
- Agent is trying to maximize total reward over time

Greedy Policy

- Let $Q_t(a_i)$ be the average value of a_i after t steps
- On each step, choose the action with the best average return thus far

$$A_{t+1} = \operatorname{argmax}_{a \in A} Q_t(a)$$

• What are the issues with this approach?

c-Greedy Policy

- Don't always pick the best looking action
 - May not actually be the best

ϵ -greedy policy:

With probability $(1 - \epsilon)$: $A_{t+1} = \operatorname{argmax}_{a \in A} Q_t(a)$ With probability ϵ : A_{t+1} is selected randomly from A

10-Armed Bandit Testbed

• Made 2,000 such problems

10-Armed Bandit Results

10-Armed Bandit Results

Exploration vs. Exploitation

- When select greedily, agent is **exploiting** its information
- When selects randomly, it is **exploring**
- If we exploit to much, can get stuck with suboptimal values
- If we explore too much, we may be sacrificing a lot of reward that we could have gotten
- Need to balance between the two
 - A central dilemma in reinforcement learning

ϵ-Greedy Policy

- Consider case where 10-arms and $\epsilon = 0.1$
 - How often will it select best arm in the limit?

c-Greedy Policy

- Consider case where 10-arms and $\epsilon = 0.1$
 - How often will it select best arm in the limit?
 - With probability 0.91
- Can decrease ϵ over time to converge to right value
 - Must satisfy certain conditions
 - Requires some knowledge about reward function
- Uniform exploration also seems odd

Action-Values

Action-Value Uncertainty

Upper Confidence Bound (UCB)

Estimate a value $U_t(a_i)$ for a_i such that

$$q^*(a_i) \le Q_t(a_i) + U_t(a_i)$$

with high probability.

UCB Algorithm

Estimate a value $U_t(a_i)$ for a_i such that

$$A_t = \operatorname{argmax}_{a \in A} \left[Q_t(a) + c \sqrt{\frac{\log t}{N_t(a)}} \right]$$

 $N_t(a)$ is the number of times a was selected c > 0 is a parameter that determines exploration

UCB vs. ϵ -Greedy (and others)

Calculating Average

Standard way to calculate average:

$$Q_t(a) = \frac{1}{N_t(a)} \cdot \sum_{i \in t(a)} R_i$$

In practice, keep track of $N_t(a)$ and the sum

• Some floating point issues

Calculating Average

Standard way to calculate average:

$$Q_t(a) = \frac{1}{N_t(a)} \cdot \sum_{i \in t(a)} R_i$$

- Linear combination of R_t values
 - All rewards have same weight of $1/N_t(a)$
 - Evidence at time t = 0 same as at t = 1,000,000

Stationary vs. Non-Stationary

- Assumption that there is an underlying MDP
 - Transition function is not changing
 - Stationary problem
- But environments change over time
 - Non-stationary
 - Recent evidence is more important

Incremental Average

Incremental way to calculate average:

$$Q_{t+1}(a) = Q_t(a) + \frac{1}{N_t(a)} \cdot (R_{t+1} - q_t(a))$$

In practice, keep track of $N_t(a)$ and $q_t(a)$

- More robust for floating point arithmetic
- Flexible

Tracking

Use parameter $\alpha \in (0,1]$

$$Q_{t+1}(a) = Q_t(a) + \alpha \cdot (R_{t+1} - q_t(a))$$

If *a* is always picked, will look like the following:

$$Q_{t+1}(a) = (1 - \alpha)^t \cdot R_1 + (1 - \alpha)^{t-1} + \dots + \alpha \cdot R_{t+1}$$

Recent evidence is more important

Tracking

Use parameter $\alpha_t(a) \in (0,1]$

$$Q_{t+1}(a) = Q_t(a) + \alpha_t(a) \cdot (R_{t+1} - Q_t(a))$$

Incremental average uses

$$\alpha_t(\alpha) = \frac{1}{t}$$

Tracking

Use parameter $\alpha_t(a) \in (0,1]$

$$Q_{t+1}(a) = Q_t(a) + \alpha_t(a) \cdot (R_{t+1} - Q_t(a))$$

If stationary, Q converge to the true q_* assuming $\alpha_t(a)$ converges to 0 "quickly enough"

State-Value Updates

• Will often use updates of the following

NewEstimate =

LastEstimate + StepSize · (Target – LastEstimate)

- Target is what we want
 - Or an estimate (*i.e.* sample) of what we want

Bandit Recap

- Don't know the reward function
- Must balance exploit-explore balance
- ϵ -greedy, UCB as solution techniques
- Incremental average calculation
- Stationary vs non-stationary updates

Beyond Bandits

- What if there are more than one state?
- What if we don't even know the transition function?
- For this class, we will at least assume we know the state-space

Reinforcement Learning

- Learn from interacting with environment
 - Could be an actual environment (like a robot)
 - Or a partially specified model
- Take an action, get a reward, and new state
- Learning to map situations to actions (policy)
 - But without a full model
 - Still trying to maximize the reward

Reinforcement Learning

- Learner (agent) not told how to act
 - No teacher, no labels on training examples
 - At least in "pure" form

• "Trial and error" learning

RL Tabular Methods

- Let's assume we can enumerate all possible states
- Can figure out applicable actions in any state
 - Just don't know resulting reward, or even transition is
- Just as in DP, consider two problems:
 - **1. Prediction/Evaluation**: how well will a policy do?
 - 2. Control: find a good policy

Monte Carlo Methods

• Estimate value function using sample episodes

Monte Carlo Methods

- Estimate value function using sample episodes
- Suitable for **episodic tasks**
 - No matter what actions we take, episode will terminate at some point (could take a long time though)
- Will update on an episode-by-episode basis
 - Not action-by-action

• Recall that G_t is the return we get during an episode after time t

$$v_{\pi}(s) = \mathbf{E}_{\pi}[G_t|S_t = s]$$

• To estimate $v_{\pi}(s)$, run episodes starting in s that use policy π , and average returns seen

• After three episodes, estimate is ...

• After three episodes, estimate is ... $V_{\pi}(s) = 5$

- Also have two episodes where B was visited
 - Can update those as well
 - Every episode allows for updates to every visited state

Monte Carlo Backup

First-Visit Monte Carlo Prediction

```
Initialize:
    \pi \leftarrow policy to be evaluated
    V \leftarrow an arbitrary state-value function
    Returns(s) \leftarrow an empty list, for all <math>s \in S
Repeat forever:
    Generate an episode using \pi
    For each state s appearing in the episode:
         G \leftarrow return following the first occurrence of s
         Append G to Returns(s)
         V(s) \leftarrow \operatorname{average}(Returns(s))
```

- First-visit only updates a state at most once per episode
 - Even if there is "loopy" behaviour
- Can also do every-visit where we update for all visits to the state
- Both techniques converge to $v_{\pi}(s)$ for s if s is visited infinitely often in the limit
 - May need exploration to guarantee this

Exploring Starts

- If π is deterministic, only try one action per state
 - May never reach many states if start in the same place
- **Exploring starts** ensure all states are visited infinitely often in order to guarantee convergence
- Sample episodes such that we start in every state infinitely often

Evaluating State-Action Pairs

- Recall that in DP, could compute $q_{\pi}(s, a)$ using a lookahead of v_{π} to the possible transitions
 - Lookahead weighted by the probability of each outcome
 - Needed to know transition probabilities
- Now we don't have transition probabilities
 - Often want q_{π} since we make decisions based on it
 - So we usually explicitly compute q_{π} instead of v_{π}

Evaluating State-Action Pairs

- Can modify first-visit and every-visit MC to update state-action pairs instead
 - Both converge if every pair is visited infinitely often
- Exploring starts for state-action pairs
 - Start with every state-action pair infinitely often

MC vs. DP

- In MC, only look at outcome that happened
 - Don't look at all outcomes like in DP
 - But means we require exploration
- Do not **bootstrap** in MC
 - DP updates v_{π} estimates based on other v_{π} estimates
 - MC only updates based on returns
- Time to update a state in MC does not depend on the number of states or even transitions
 - No **sweeping** like in DP

RL Control

- Coming up with a good policy
 - Without model, must do it through experience
- Techniques can be viewed as instances of Generalized Policy Iteration

Generalized Policy Iteration

Policy evaluation Estimate v_{π} e.g. Iterative policy evaluation Policy improvement Generate $\pi' \ge \pi$ e.g. Greedy policy improvement

Policy Improvement Theorem

If we have computed v_{π} , and $q_{\pi}(s, a) > v_{\pi}(s)$, then the policy that chooses a will be better.

Or

 $\pi_{k+1} \geq \pi_k$

if and only if

$$\forall s, q_{\pi_k}(s, \pi_{k+1}(s)) \ge v_{\pi_k}(s)$$

Monte Carlo Control

- Alternate between policy evaluation and greedy policy improvement
- Just as in DP, don't need to do full evaluation before improvement
 - Can stop if changes are small
 - Or even just after each episode

Monte Carlo Control with ES

```
Initialize, for all s \in S, a \in \mathcal{A}(s):
     Q(s, a) \leftarrow \text{arbitrary}
     \pi(s) \leftarrow \text{arbitrary}
     Returns(s, a) \leftarrow empty list
Repeat forever:
     Choose S_0 \in S and A_0 \in \mathcal{A}(S_0) s.t. all pairs have probability > 0
     Generate an episode starting from S_0, A_0, following \pi
     For each pair s, a appearing in the episode:
          G \leftarrow return following the first occurrence of s, a
          Append G to Returns(s, a)
          Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))
     For each s in the episode:
          \pi(s) \leftarrow \operatorname{argmax}_{a} Q(s, a)
```

Exploration for MC Control

- Exploring starts is a strong requirement
 - Not realistic in some cases (like a robot)
- But need to visit every pair to ensure convergence
- Can do this with **soft** policies
 - $\pi(a|s) > 0$ for all s and a
- ϵ -greedy ensures this

Exploration for MC Control

- Exploring starts is a strong requirement
 - Not realistic in some cases (like a robot)
- But need to visit every pair to ensure convergence
- Can do this with **soft** policies
 - $\pi(a|s) > 0$ for all s and a
- ϵ -greedy ensures this
 - Any action sequence of length d starting in s has $\geq \epsilon^d$ probability of happening

MC Control with ϵ -Soft Policies

```
Initialize, for all s \in S, a \in \mathcal{A}(s):
     Q(s,a) \leftarrow \text{arbitrary}
     Returns(s, a) \leftarrow empty list
     \pi(a|s) \leftarrow \text{an arbitrary } \varepsilon \text{-soft policy}
Repeat forever:
     (a) Generate an episode using \pi
     (b) For each pair s, a appearing in the episode:
               G \leftarrow return following the first occurrence of s, a
               Append G to Returns(s, a)
               Q(s, a) \leftarrow \operatorname{average}(Returns(s, a))
     (c) For each s in the episode:
               A^* \leftarrow \arg \max_a Q(s, a)
               For all a \in \mathcal{A}(s):
                   \pi(a|s) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(s)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(s)| & \text{if } a \neq A^* \end{cases}
```

GPI and ϵ -Greedy Policies

- "Greedy" policy improvement, will now result in another ϵ -greedy policy
- Will now converge to the optimal ϵ -greedy policy
 - Like finding the optimal policy in a new domain where don't always get the action that you want

GPI and ϵ -Greedy Policies

- This control approach is an example of on-policy learning
 - Using the learnt policy to generate episodes
- Also have **off-policy learning** techniques
 - Use a **behaviour policy** to generate episodes
 - Learning the **target** policy

Off-Policy Learning

• Behaviour policy is exploratory, ensures that all state-action pairs are tried

- Target policy can be deterministic
 - Means convergence is possible to optimal policy
 - Not just optimal ϵ -soft policy

Off-Policy Learning

- Roughly learn less per episode
- Can only learn from parts of the episode where the behaviour and target policies coincide
 - Or at least, the degree that they are similar
- Can be slower, and harder to generalize

Why Use Off-Policy Learning?

- Can do massively parallel learning
 - Learning about multiple policies at once
- Can learn multiple policies at once
- Can use episodes provided by a human
 - Demonstrating good behaviour
- Learning from batch of episodes

Monte Carlo Recap

- RL is learning from experience
 - Trial and error
- Monte Carlo methods predict using what happened
 - Based on episode results, does not bootstrap
- Need to ensure everything is trying often enough
- Monte Carlo control using GPI in a greedy way
 - On-policy learns best ϵ -soft policy
 - Off-policy can learn best policy, but "learns less" per epsiode