
Bandit Algorithms and 
Monte Carlo Methods

Rick Valenzano and Sheila McIlraith



Outline

• General assignment questions

• Recap of where we are

• Finish off bandits
• UCB, incremental averaging, tracking

• Reinforcement Learning

• Monte Carlo methods
• On-policy prediction and control



Acknowledgements

• Images from the RL book

• Based on slides by David Silver and Adam White



Assignment

• Grace days

• Questions?



Recap

• Building system to achieve some objective
• Through some extended interaction with the 

environment

• Try to model it, then pick an appropriate tool for 
that model



Recap

• Is the problem deterministic, fully observable, and 
with a possible finite transition function?

• Try modelling it as a classical planning problem
• Model it in PDDL and try an off-the-shelf planner
• Develop a problem specific heuristic, build a system







Recap

• Run A*

• Too big for A*? Time constraints?
• Try suboptimal algorithms like WA* or GBFS
• Just need to figure out good settings for it



Recap

• Fully observable, with discrete and stochastic 
actions with known transition probabilities?

• Try modelling it as an MDP





Recap

• Model it as an MDP

• Solve using value or policy iteration

• So far, we are assuming we can maintain state value 
functions in a table

• Tabular Methods



Tabular Methods

0

0

0

0

0



Tabular Methods

6

0

6

8

10



Recap

• To use MDP methods, need a complete model

• But what if we don’t know everything?

• What if we don’t how reward function works?
• Single state problem is an MDP
• Finish this today



Preview

• What if the underlying MDP has multiple states?
• Next two lectures

• What if the state-space is too large?
• Tabular methods aren’t possible
• Need approximation methods (next week)



Multi-Armed Bandits

• There are actions 

• All actions applicable on all of discrete time steps
• Infinite time steps 1, 2, 3, …
• On each time step, pick one to execute. Denoted 

•

• Agent is trying to maximize total reward over time



Greedy Policy

• Let be the average value of after steps

• On each step, choose the action with the best 
average return thus far

• What are the issues with this approach?



-Greedy Policy

• Don’t always pick the best looking action
• May not actually be the best

-greedy policy:
With probability 

With probability :
is selected randomly from 



10-Armed Bandit Testbed

• Made 2,000 such problems



10-Armed Bandit Results



10-Armed Bandit Results



Exploration vs. Exploitation

• When select greedily, agent is exploiting its information

• When selects randomly, it is exploring

• If we exploit to much, can get stuck with suboptimal values

• If we explore too much, we may be sacrificing a lot of 
reward that we could have gotten

• Need to balance between the two
• A central dilemma in reinforcement learning



-Greedy Policy

• Consider case where 10-arms and 
• How often will it select best arm in the limit?



-Greedy Policy

• Consider case where 10-arms and 
• How often will it select best arm in the limit?
• With probability 0.91

• Can decrease over time to converge to right value
• Must satisfy certain conditions
• Requires some knowledge about reward function

• Uniform exploration also seems odd



Action-Values

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 1

Re
w

ar
d 

Co
un

t

Reward

Arm 1 Arm 2 Arm 3



Action-Value Uncertainty



Upper Confidence Bound (UCB)

Estimate a value for such that

with high probability.



UCB Algorithm

Estimate a value for such that

 

is the number of times was selected
is a parameter that determines exploration



UCB vs. -Greedy (and others)



Calculating Average

Standard way to calculate average:

In practice, keep track of and the sum
• Some floating point issues



Calculating Average

Standard way to calculate average:

• Linear combination of values
• All rewards have same weight of 
• Evidence at time same as at 



Stationary vs. Non-Stationary

• Assumption that there is an underlying MDP
• Transition function is not changing
• Stationary problem

• But environments change over time
• Non-stationary
• Recent evidence is more important



Incremental Average

Incremental way to calculate average:

In practice, keep track of and 
• More robust for floating point arithmetic
• Flexible



Tracking

Use parameter 

If is always picked, will look like the following:

Recent evidence is more important



Tracking

Use parameter 

Incremental average uses 



Tracking

Use parameter 

If stationary, converge to the true assuming 
converges to “quickly enough”



State-Value Updates

• Will often use updates of the following

NewEstimate = 
LastEstimate + StepSize (Target – LastEstimate)

• Target is what we want 
• Or an estimate (i.e. sample) of what we want



Bandit Recap

• Don’t know the reward function

• Must balance exploit-explore balance 

• -greedy, UCB as solution techniques

• Incremental average calculation

• Stationary vs non-stationary updates



Beyond Bandits

• What if there are more than one state?

• What if we don’t even know the transition 
function?

• For this class, we will at least assume we know the 
state-space



Reinforcement Learning

• Learn from interacting with environment
• Could be an actual environment (like a robot)
• Or a partially specified model

• Take an action, get a reward, and new state

• Learning to map situations to actions (policy)
• But without a full model
• Still trying to maximize the reward



Reinforcement Learning

• Learner (agent) not told how to act
• No teacher, no labels on training examples
• At least in “pure” form

• “Trial and error” learning



RL Tabular Methods

• Let’s assume we can enumerate all possible states

• Can figure out applicable actions in any state
• Just don’t know resulting reward, or even transition is

• Just as in DP, consider two problems:
1. Prediction/Evaluation: how well will a policy do?
2. Control: find a good policy



Monte Carlo Methods
• Estimate value function using sample episodes

7.5

3

-1.2

0.5

11

or

10
5
3
0

-2.0
0
0
1

11
11



Monte Carlo Methods

• Estimate value function using sample episodes

• Suitable for episodic tasks
• No matter what actions we take, episode will terminate 

at some point (could take a long time though)

• Will update on an episode-by-episode basis
• Not action-by-action



Monte Carlo Prediction

• Recall that is the return we get during an 
episode after time 

• To estimate , run episodes starting in that 
use policy , and average returns seen



Monte Carlo Prediction

• After three episodes, estimate is …



Monte Carlo Prediction

• After three episodes, estimate is … 



Monte Carlo Prediction

• Also have two episodes where B was visited
• Can update those as well
• Every episode allows for updates to every visited state



Monte Carlo Backup



First-Visit Monte Carlo Prediction



Monte Carlo Prediction

• First-visit only updates a state at most once per 
episode

• Even if there is “loopy” behaviour

• Can also do every-visit where we update for all 
visits to the state

• Both techniques converge to for if is 
visited infinitely often in the limit

• May need exploration to guarantee this



Exploring Starts

• If is deterministic, only try one action per state
• May never reach many states if start in the same place

• Exploring starts ensure all states are visited 
infinitely often in order to guarantee convergence

• Sample episodes such that we start in every state 
infinitely often



Evaluating State-Action Pairs

• Recall that in DP, could compute using a 
lookahead of to the possible transitions

• Lookahead weighted by the probability of each outcome
• Needed to know transition probabilities

• Now we don’t have transition probabilities
• Often want since we make decisions based on it
• So we usually explicitly compute instead of 



Evaluating State-Action Pairs

• Can modify first-visit and every-visit MC to update 
state-action pairs instead

• Both converge if every pair is visited infinitely often

• Exploring starts for state-action pairs
• Start with every state-action pair infinitely often



MC vs. DP

• In MC, only look at outcome that happened
• Don’t look at all outcomes like in DP
• But means we require exploration

• Do not bootstrap in MC
• DP updates estimates based on other estimates
• MC only updates based on returns

• Time to update a state in MC does not depend on 
the number of states or even transitions

• No sweeping like in DP



RL Control

• Coming up with a good policy
• Without model, must do it through experience

• Techniques can be viewed as instances of 
Generalized Policy Iteration



Generalized Policy Iteration



Policy Improvement Theorem

If we have computed , and , then the 
policy that chooses will be better.

Or

if and only if

ೖ ೖ



Monte Carlo Control

• Alternate between policy evaluation and greedy 
policy improvement

• Just as in DP, don’t need to do full evaluation 
before improvement

• Can stop if changes are small
• Or even just after each episode



Monte Carlo Control with ES



Exploration for MC Control

• Exploring starts is a strong requirement
• Not realistic in some cases (like a robot)

• But need to visit every pair to ensure convergence

• Can do this with soft policies
• for all and 

• -greedy ensures this



Exploration for MC Control

• Exploring starts is a strong requirement
• Not realistic in some cases (like a robot)

• But need to visit every pair to ensure convergence

• Can do this with soft policies
• for all and 

• -greedy ensures this
• Any action sequence of length starting in has ௗ

probability of happening



MC Control with -Soft Policies



GPI and -Greedy Policies

• “Greedy” policy improvement, will now result in 
another -greedy policy

• Will now converge to the optimal -greedy policy
• Like finding the optimal policy in a new domain where 

don’t always get the action that you want 



GPI and -Greedy Policies

• This control approach is an example of on-policy 
learning

• Using the learnt policy to generate episodes

• Also have off-policy learning techniques
• Use a behaviour policy to generate episodes
• Learning the target policy



Off-Policy Learning

• Behaviour policy is exploratory, ensures that all 
state-action pairs are tried

• Target policy can be deterministic
• Means convergence is possible to optimal policy
• Not just optimal -soft policy



Off-Policy Learning

• Roughly learn less per episode

• Can only learn from parts of the episode where the 
behaviour and target policies coincide

• Or at least, the degree that they are similar

• Can be slower, and harder to generalize 



Why Use Off-Policy Learning?

• Can do massively parallel learning
• Learning about multiple policies at once

• Can learn multiple policies at once

• Can use episodes provided by a human
• Demonstrating good behaviour

• Learning from batch of episodes



Monte Carlo Recap

• RL is learning from experience
• Trial and error

• Monte Carlo methods predict using what happened
• Based on episode results, does not bootstrap

• Need to ensure everything is trying often enough

• Monte Carlo control using GPI in a greedy way
• On-policy learns best -soft policy
• Off-policy can learn best policy, but “learns less” per epsiode


