Bandit Algorithms and
Monte Carlo Methods

Rick Valenzano and Sheila Mcllraith

Outline

General assignment questions
Recap of where we are

Finish off bandits

* UCB, incremental averaging, tracking
Reinforcement Learning

Monte Carlo methods
* On-policy prediction and control

Acknowledgements

* Images from the RL book

* Based on slides by David Silver and Adam White

Assignment

* Grace days

e Questions?

Recap

* Building system to achieve some objective

* Through some extended interaction with the
environment

* Try to model it, then pick an appropriate tool for
that model

Recap

* Is the problem deterministic, fully observable, and
with a possible finite transition function?

* Try modelling it as a classical planning problem
* Model it in PDDL and try an off-the-shelf planner
* Develop a problem specific heuristic, build a system

‘AN EEEE._ _J4amr il EEEN"
EElE._. T"TEEEEEEEEN' R 11 11 B

HENE .ANEEEEEEER: HEEREEN
‘WANEEEEENF _EEEEENI]
B EEEEEEF "EHEEENENI]

T EEFE"SEEN. B MEEF _ . AEEEEEERI

=
ER
HN
1
N
ok
mrF
1

i1 115 1TIHE. ™EENI
AEEPF " A .dEEN. THEI
"WEF AEEEEEEF" NN T
TENEEEF LJEEEF
T T | L 'HEF silnm]
_dEEE-Sine .EHF JEEENI]
EEENEEEN . AEEEN]

ll-‘-I-III-
' IEEEEED"

,llr"lll_ih-.
1HEE "EEEEEE sEEE.

AN "HEEEEF JdEHIEL
1HF IEEEENE.

HE "% TMlkscdlimdl
auiBEEEE. ANEEEEN]
TEEEENER. ~dEEEEEN]
JENEENEEN. "ENEEENN]
"EENENEEEFr JNEHERENEN]

EEEEFEE AEEERAMT

%
=
[]
el
|

- Immr
1 1Ll
dEEN,
ENUEE

M
7]
0
[
B
&
E

Recap

e Run A*

* Too big for A*? Time constraints?
* Try suboptimal algorithms like WA* or GBFS
 Just need to figure out good settings for it

Recap

* Fully observable, with discrete and stochastic
actions with known transition probabilities?

* Try modelling it as an MDP

Facebook
=1

-+
A &
Quit Facebook Sleep
R=10 R=-1 R=10
Study

R=+10

\ Study
L ad
R

=2

Recap

* Model it as an MDP
* Solve using value or policy iteration

* So far, we are assuming we can maintain state value
functions in a table

e Tabular Methods

f'-{f(,'a’ book

Quit
R=10

Facebook

Tabular Methods

Study
R=+10

Facebook
R=-1
]

Facebook
R=-I

q*x B/

Study

Tabular Methods

wx(als) fory =1

Study
R=+10
o % 10

Recap

* To use MDP methods, need a complete model
* But what if we don’t know everything?

e What if we don’t how reward function works?

 Single state problem is an MDP
* Finish this today

Preview

* What if the underlying MDP has multiple states?
* Next two lectures

* What if the state-space is too large?
* Tabular methods aren’t possible
* Need approximation methods (next week)

Multi-Armed Bandits

* There aren actions A = {ay, ..., a,,}

* All actions applicable on all of discrete time steps
* Infinite time steps 1, 2, 3, ...
* On each time step, pick one to execute. Denoted A;

* q°(s,a;) = q"(a;) = E[R¢|q;]

* Agent is trying to maximize total reward over time

Greedy Policy

* Let Q;(a;) be the average value of a; after t steps

* On each step, choose the action with the best
average return thus far

Ary1 = argmaxgeqQc(a)

 What are the issues with this approach?

e-Greedy Policy

* Don’t always pick the best looking action
* May not actually be the best

e-greedy policy:
With probability (1 — €):
A¢y1 = argmaxgesQ¢(a)
With probability €:
A¢,q is selected randomly from A

B

RtNNq*

10-Armed Bandit Testbed

Reward 0
distribution
o q+(2)
Action

* Made 2,000 such problems

w

N

—

—_

N

1.5 .

Average
reward

0.5 4

10-Armed Bandit Results

e=0

4»-". N” h-MM Ll

e = 0 (greedy)

AR

=001

I
250

560
Steps

|
750

|
1000

10-Armed Bandit Results

100% _
80% _|
A 60% _|
Optimal
action 40%
20%
0%

| |] 1
1 250 500 750 1000

Steps

Exploration vs. Exploitation

When select greedily, agent is exploiting its information
When selects randomly, it is exploring
If we exploit to much, can get stuck with suboptimal values

If we explore too much, we may be sacrificing a lot of
reward that we could have gotten

Need to balance between the two
* A central dilemma in reinforcement learning

e-Greedy Policy

e Consider case where 10-arms and € = 0.1
e How often will it select best arm in the limit?

e-Greedy Policy

e Consider case where 10-armsand € = 0.1

e How often will it select best arm in the limit?
* With probability 0.91

* Can decrease € over time to converge to right value
* Must satisfy certain conditions
* Requires some knowledge about reward function

* Uniform exploration also seems odd

Reward Count

14

12

10

Action-Values

BArm 1

W Arm 2

mArm 3

0 1 2 3 4 5 6 7 8 9

Reward

10 11 1

Action-Value Uncertainty

p(Q)

Q(a))

-1.6 -1.2 -0.8 -0.4 0

Upper Confidence Bound (UCB)

Estimate a value U;(a;) for a; such that
q (a;) < Q¢(a;) + Ur(a;)

with high probability.

UCB Algorithm

Estimate a value U;(a;) for a; such that

logt
N:(a)

Ay = argmaxgeq |Qc(a) + ¢

\

N:(a) is the number of times a was selected
¢ > 0 is a parameter that determines exploration

UCB vs. e-Greedy (and others)

. 0 A — greedy with
—— b, optimistic
~_initialization
v N =D

14

Average (3| c.greedy —

reward | -. |
; p gradient \
over first | % bandit
1000 steps 7
1.1}
l -

1/128 1/64 1/32 1/16 1/

e/ a/c/ Qo

Calculating Average

Standard way to calculate average:

1
Q¢(a) :Nt(a) ' 2 R;

i€t(a)

In practice, keep track of Ny(a) and the sum
* Some floating point issues

Calculating Average

Standard way to calculate average:

1
Q¢(a) :Nt(a) ' 2 R;

i€t(a)

* Linear combination of R; values
* All rewards have same weight of 1/N;(a)
 Evidence attimet = 0sameasatt = 1,000,000

Stationary vs. Non-Stationary

* Assumption that there is an underlying MDP
* Transition function is not changing
 Stationary problem

* But environments change over time
* Non-stationary
* Recent evidence is more important

Incremental Average

Incremental way to calculate average:

1
Qe+1(a) = Qr(a) + m' (Rey1 — qe(a))

In practice, keep track of N;(a) and g,(a)
* More robust for floating point arithmetic
* Flexible

Tracking

Use parameter a € (0,1]
Qi+1(a) = Q¢(a) + a - (Rerq — q¢(a))
If a is always picked, will look like the following:

Qt+1(a)
=—1-a)t R+ —-a)" T+ 4+a- Ry

Recent evidence is more important

Tracking

Use parameter a;(a) € (0,1]
Qt+1(a) = Qr(a) + ai(a) - (Req — Qr(a))

Incremental average uses

ap(a) = +

Tracking

Use parameter a;(a) € (0,1]

Qe+1(a) = Qc(a) + ar(a) - (Rey1 — Qc(a))

If stationary, Q converge to the true g, assuming
as(a) converges to 0 “quickly enough”

State-Value Updates

* Will often use updates of the following

NewEstimate =

LastEstimate + StepSize - (Target — LastEstimate)

* Target is what we want
* Or an estimate (i.e. sample) of what we want

Bandit Recap
* Don’t know the reward function
* Must balance exploit-explore balance
* e-greedy, UCB as solution techniques
* Incremental average calculation

* Stationary vs non-stationary updates

Beyond Bandits

e What if there are more than one state?

e What if we don’t even know the transition
function?

* For this class, we will at least assume we know the
state-space

Reinforcement Learning

* Learn from interacting with environment
e Could be an actual environment (like a robot)
* Or a partially specified model

* Take an action, get a reward, and new state

 Learning to map situations to actions (policy)
e But without a full model
* Still trying to maximize the reward

Reinforcement Learning

* Learner (agent) not told how to act
* No teacher, no labels on training examples
* At least in “pure” form

* “Trial and error” learning

RL Tabular Methods

* Let’s assume we can enumerate all possible states

* Can figure out applicable actions in any state
 Just don’t know resulting reward, or even transition is

e Just as in DP, consider two problems:

1. Prediction/Evaluation: how well will a policy do?
2. Control: find a good policy

Monte Carlo Methods

* Estimate value function using sample episodes

Monte Carlo Methods

* Estimate value function using sample episodes

 Suitable for episodic tasks

* No matter what actions we take, episode will terminate
at some point (could take a long time though)

* Will update on an episode-by-episode basis
* Not action-by-action

Monte Carlo Prediction

* Recall that G, is the return we get during an
episode after time t

U (S) = Ex[Ge|S; = 5]

* To estimate v, (s), run episodes starting in s that
use policy 1, and average returns seen

Monte Carlo Prediction

Ry Ry Ry

S . e o o T
R, Rg Ry

9 " e o o > T

i Ry Ry
S > e o o — T

» After three episodes, estimate is ...

Monte Carlo Prediction

Ry Ry Ry

5 > e o o > T 5
R Rg Ry

S > e o o | T 3

i Ry Ry
S > e o o — T 7

* After three episodes, estimateis ... I;(s) = 5

Monte Carlo Prediction

Ry Ry Ry
5 > e o o > T 5
R Rg Ry
S > e o o | T 3

i Ry Ry
S > e o o — T 7

* Also have two episodes where B was visited

e Can update those as well
* Every episode allows for updates to every visited state

Monte Carlo Backup

First-Visit Monte Carlo Prediction

Initialize:
m <— policy to be evaluated
V < an arbitrary state-value tunction
Returns(s) < an empty list, for all s € 8

Repeat forever:
(Generate an episode using 7
For each state s appearing in the episode:
(G < return following the first occurrence of s
Append G to Returns(s)
V' (s) < average(Returns(s))

Monte Carlo Prediction

* First-visit only updates a state at most once per
episode
e Even if there is “loopy” behaviour

* Can also do every-visit where we update for all
visits to the state

* Both techniques converge to v, (s) for s if s is
visited infinitely often in the limit

* May need exploration to guarantee this

Exploring Starts

* If T is deterministic, only try one action per state
* May never reach many states if start in the same place

* Exploring starts ensure all states are visited
infinitely often in order to guarantee convergence

 Sample episodes such that we start in every state
infinitely often

Evaluating State-Action Pairs

* Recall that in DP, could compute g, (s, a) using a
lookahead of v,; to the possible transitions

* Lookahead weighted by the probability of each outcome
* Needed to know transition probabilities

* Now we don’t have transition probabilities
* Often want g, since we make decisions based on it
* So we usually explicitly compute q,; instead of v,

Evaluating State-Action Pairs

e Can modify first-visit and every-visit MC to update
state-action pairs instead

* Both converge if every pair is visited infinitely often

* Exploring starts for state-action pairs
» Start with every state-action pair infinitely often

MC vs. DP

* In MC, only look at outcome that happened
* Don’t look at all outcomes like in DP
* But means we require exploration

* Do not bootstrap in MC
* DP updates v,; estimates based on other v, estimates
 MC only updates based on returns

* Time to update a state in MC does not depend on
the number of states or even transitions

* No sweeping like in DP

RL Control

* Coming up with a good policy
* Without model, must do it through experience

e Techniques can be viewed as instances of
Generalized Policy Iteration

Generalized Policy Iteration

evaluation

/—:N

T |4

starting v*
V o 7—>greedy(V)
improvement
pee ®
®
Policy evaluation Estimate v, .
e.g. lterative policy evaluation .
" . ,
Policy |mproveme_nt Generate T > ” R
e.g. Greedy policy improvement T - vV

Policy Improvement Theorem

If we have computed v, and g, (s,a) > v,(s), then the
policy that chooses a will be better.

Or

T4t = T
if and only if

Vs, Ay, (S' 7-l'-k+1(S)) = UTL'k (S)

Monte Carlo Control

* Alternate between policy evaluation and greedy
policy improvement

e Just as in DP, don’t need to do full evaluation
before improvement
* Can stop if changes are small
* Or even just after each episode

Monte Carlo Control with ES

Initialize, for all s € 8, a € A(s):
Q(s,a) < arbitrary
7(s) < arbitrary
Returns(s,a) < empty list

Repeat forever:
Choose Sy € 8§ and Ay € A(Sp) s.t. all pairs have probability > 0
Generate an episode starting from Sy, Ay, following 7
For each pair s, a appearing in the episode:
(G < return following the first occurrence of s, a
Append G to Returns(s,a)
Q(s,a) < average(Returns(s,a))
For each s in the episode:
7(s) - argmax, Q(s,a)

Exploration for MC Control

* Exploring starts is a strong requirement
* Not realistic in some cases (like a robot)

* But need to visit every pair to ensure convergence

* Can do this with soft policies
* m(als) > O0forallsanda

e e-greedy ensures this

Exploration for MC Control

Exploring starts is a strong requirement
* Not realistic in some cases (like a robot)

But need to visit every pair to ensure convergence

Can do this with soft policies
* m(als) > 0forallsand a

e-greedy ensures this

e Any action sequence of length d starting in s has > €%
probability of happening

MC Control with e-Soft Policies

Initialize, for all s € §, a € A(s):
Q(s,a) « arbitrary
Returns(s,a) < empty list
m(als) «— an arbitrary e-soft policy

Repeat forever:
(a) Generate an episode using 7
(b) For each pair s, a appearing in the episode:
G < return following the first occurrence of s, a
Append G to Returns(s,a)
(s, a) < average(Returns(s,a))
(c) For each s in the episode:
A* + argmax, Q(s,a)
For all a € A(s):
l1—e+¢e/|A(s)| ifa=A*
miajs) 4 { e/|A(s) N e £ A"

GPl and e-Greedy Policies

* “Greedy” policy improvement, will now result in
another e-greedy policy

* Will now converge to the optimal e-greedy policy

* Like finding the optimal policy in a new domain where
don’t always get the action that you want

GPl and e-Greedy Policies

* This control approach is an example of on-policy
learning

* Using the learnt policy to generate episodes

* Also have off-policy learning techniques
* Use a behaviour policy to generate episodes
e Learning the target policy

Off-Policy Learning

* Behaviour policy is exploratory, ensures that all
state-action pairs are tried

* Target policy can be deterministic
* Means convergence is possible to optimal policy
* Not just optimal e-soft policy

Off-Policy Learning

* Roughly learn less per episode

e Can only learn from parts of the episode where the
behaviour and target policies coincide

* Or at least, the degree that they are similar

* Can be slower, and harder to generalize

Why Use Off-Policy Learning?

* Can do massively parallel learning
* Learning about multiple policies at once

* Can learn multiple policies at once

* Can use episodes provided by a human
 Demonstrating good behaviour

* Learning from batch of episodes

Monte Carlo Recap

RL is learning from experience
* Trial and error

Monte Carlo methods predict using what happened
* Based on episode results, does not bootstrap

Need to ensure everything is trying often enough

Monte Carlo control using GPIl in a greedy way
* On-policy learns best e-soft policy
» Off-policy can learn best policy, but “learns less” per epsiode

