

Assignment Format

- Investigating the impact of tie-breaking and reexpansions on A*, WA*, and GBFS
- Given a codebase with A* implemented
 - Will have to add WA* and GBFS
 - Will have to add different tie-breaking rules
 - Will have to add re-expansion options
- Three proofs as well

UNIVERSITY OF TORONTO

Tie-Breaking

- In A*, you can have two nodes with the same f-cost
 Which should you prefer?
- What about in WA* and GBFS?

Re-Expansions

 Comparing WA* and GBFS when you reopen nodes and when you do not

UNIVERSITY OF TORONTO

UNIVERSITY OF TORONTO

def OCL(s_i):
$OPEN \leftarrow \{s_i\} CLOSED \leftarrow \{s_i\}$
$a(s_t) = 0$, parent $(s_t) = \emptyset$
while $OPEN \neq \{\}$:
$p \leftarrow \text{SelectNode}(OPEN)$
if p is a goal, return path to p
for $c \in children(p)$:
if $c \notin OPEN \cup CLOSED$:
$g(c) = g(p) + \kappa(p, c)$
parent(c) = p
$OPEN \leftarrow OPEN \cup \{c\}$
else if $g(c) > g(p) + \kappa(p,c)$:
$\tilde{g}(c) = \tilde{g}(p) + \kappa(p,c)$
parent(c) = p
if $c \in CLOSED$:
$OPEN \leftarrow OPEN \cup \{c\}$
$CLOSED \leftarrow CLOSED - \{c\}$
$OPEN \leftarrow OPEN - \{p\}, CLOSED \leftarrow CLOSED \cup \{p\}$
return No solution exists

Re-Expansions

- Comparing WA* and GBFS when you reopen nodes and when you do not
 - How does this impact performance?

UNIVERSITY OF TORONTO

Grid Pathfinding

- Pathfinding in a grid
- 4-connected means can move N, E, S, W
 Every move costs 1
- 8-connected means can also move NE, SE, SW, NW
 Diagonal moves cost square root 2

Heuristics

- Manhattan distance for 4-connected
- Octile distance for 8-connected

UNIVERSITY OF TORONTO

A* Implementation

Dijkstra's is O(|V|log|V| + |E|)
 Why?

UNIVERSITY OF TORONTO

A* Implementation

- NodeTable for OPEN and CLOSED list
 - Nodes are assigned a StateID
 - Hash table for Open-Closed list checking
- Priority Queue for OPEN list

UNIVERSITY OF TORONTO