
PLEA
SE

H
A
N
D
IN

UNIVERSITY OF TORONTO
Faculty of Arts and Science

St. George Campus

DECEMBER 2017 EXAMINATIONS

CSC209H1F
Liu, Reid
3 hours

PL
EA
SE

H
A
N
D
IN

No Examination Aids

Student Number:

Last (Family) Name(s):

First (Given) Name(s):

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,

and read the instructions below carefully.)

This final examination consists of 10 questions on 18 pages. A mark of at
least 31 out of 77 on this exam is required to pass this course, otherwise
your final course grade will be no higher than 47%. When you receive
the signal to start, please make sure that your copy of the examination is
complete.
You are not required to add any #include lines, and unless otherwise
specified, you may assume a reasonable maximum for character arrays or
other structures. Error checking is not necessary unless it is required for
correctness or specifically requested.

Marking Guide

1: / 8

2: / 6

3: / 6

4: /10

5: / 8

6: / 8

7: / 6

8: /10

9: / 9

10: / 6

TOTAL: /77Good Luck!

Page 1

CSC 209H1F Final Examination DECEMBER 2017

Question 1. [8 marks]

Circle the correct answer for the statements below.

TRUE FALSE Multiple processes on a machine may use the same port number to listen
for connections.

TRUE FALSE
A SIGPIPE signal is sent when a process makes a write call to a closed
socket or pipe.

TRUE FALSE The standard line ending used in network communications is ’\n’.

TRUE FALSE The function perror is used to print error messages for any function.

TRUE FALSE
Given the following code, the file fp can be closed immediately after the
dup2 call because it is no longer needed.

FILE *fp = fopen("myfs", "r");

dup2(fileno(fp), fileno(stdin));

TRUE FALSE
Suppose we have a Makefile with a target t. Running make t will always
create a file called t in the current working directory.

TRUE FALSE The code below copies the fields of b into a.

struct node a, b;

//missing code to assign values to the fields in b

a = b;

TRUE FALSE The code below is an example of a memory leak.

struct node {

int val;

struct node *next;

};

void free_list(struct node *head) {

while(head != NULL) {

free(head);

head = head->next;

}

}

Page 2 of 18

DECEMBER 2017 Final Examination CSC 209H1F

Question 2. [6 marks]

Part (a) [4 marks]

Write a shell script that adds every subdirectory of your current working directory to your PATH variable. Note
that the PATH variable requires an absolute path to each subdirectory. Remember that the environment variable PWD

stores the absolute path to the current working directory. (Do not recurse into subdirectories.)

Part (b) [2 marks]

A program my prog in the parent directory of the current working directory prints out some plaintext when run.

Write a single shell command that computes the number of words in the output of my prog, and prints this number
to the file called outfile.

Page 3 of 18

CSC 209H1F Final Examination DECEMBER 2017

Question 3. [6 marks]

For each pair of code snippets below, select match if the pair would output the same thing, does not match if the
output would be different, or may not match if the output might match, but not always.

If you select does not match or may not match, briefly explain why.

Part (a) [1 mark]

int a = 3;

int *b = &a;

printf("%d", *b);

int *c = malloc(sizeof(int));

*c = 3;

printf("%d", c);

Selection

� match � does not match � may not match

Explanation

Part (b) [1 mark]

int x = 1 << 3;

int y = x | 1;

printf("%d %d\n", x, y);

int z = 8;

printf("%d %d\n", z, z + 1);

Selection

� match � does not match � may not match

Explanation

Page 4 of 18

DECEMBER 2017 Final Examination CSC 209H1F

Part (c) [1 mark]

int res = fork();

if (res == 0) {

execl("/bin/ls", "ls", NULL);

exit(42);

} else if (res > 0) {

int status;

wait(&status);

if (WIFEXITED(status)) {

printf("%d", WEXITSTATUS(status));

}

}

printf("%d", 42);

Selection

� match � does not match � may not match

Explanation

Part (d) [1 mark]

char *s = "hillo world";

s[1] = 'e';

printf("%s", s);

printf("hello world");

Selection

� match � does not match � may not match

Explanation

Page 5 of 18

CSC 209H1F Final Examination DECEMBER 2017

Part (e) [1 mark]

char *s = malloc(strlen("hello world"));

strcpy(s, "hello world");

printf("%s", s);

printf("hello world");

Selection

� match � does not match � may not match

Explanation

Part (f) [1 mark]

char *s = "hello world";

char *t = malloc(sizeof(s));

strcpy(t, s);

printf("%s", t);

printf("hello world");

Selection

� match � does not match � may not match

Explanation

Page 6 of 18

DECEMBER 2017 Final Examination CSC 209H1F

Question 4. [10 marks]

Consider the program below.

Part (a) [2 marks]

(i) What is the value of strlen(course) just before stem returns?

(ii) What is the value of strlen(s) just before stem returns?

(iii) What is the value of strlen(ptr) just before stem returns?

(iv) What does the print statement in main print?

Part (b) [8 marks]

Draw a complete memory diagram showing all of the memory allocated immediately before stem returns. Clearly
label the different sections of memory (stack, heap, global), as well as different stack frames. You must show where
each variable is stored, but make sure it’s clear in your diagram what is a variable name vs. the value stored for
that variable. You may show a pointer value by drawing an arrow to the location in memory with that address, or
may make up address values.

char *stem(char *course) {

char *s = malloc(strlen(course) + 1);

strncpy(s, course, strlen(course) + 1);

char *ptr = s;

while(*ptr != 'H') {

ptr++;

}

*ptr = '\0';

// Draw memory diagram at this point

return s;

}

int main() {

char *c1 = "CSC209H1F";

char *c2 = stem(c1);

printf("%s %s\n", c1, c2);

return 0;

}

Page 7 of 18

CSC 209H1F Final Examination DECEMBER 2017

Question 5. [8 marks]

Implement the following function according to its documentation.

struct pair {

char *name;

char *value;

}

/*

* You are given a null-terminated string, s, in the following form:

* - It contains between 1 and 10 lines, where each line except the last ends with '\n'

* - Each line is of the form "<name>: <value>", where <name> and <value> are non-empty strings.

* Note that there is exactly one space between the colon and value string.

* - Each name and value string do *not* contain a colon (but may contain spaces).

*

* For example:

* - "a: bc"

* - "name1: a\nname2: b"

* - "Content-Type: text/plain\nHost: teach.cs.toronto.edu"

*

* Your job is to parse the string, storing each name and value in an array of

* struct pairs. Any unfilled pairs in the array have their name and value

* fields set to NULL (we've initialized this for you).

*/

struct pair *parse_pairs(char *s) {

// Initialize an array (assume there's at most 10 pairs in s).

struct pair *data = malloc(10 * sizeof(struct pair));

for (int i = 0; i < 10; i++) {

data[i].name = NULL;

data[i].value = NULL;

}

return data;

}

Page 8 of 18

DECEMBER 2017 Final Examination CSC 209H1F

Question 6. [8 marks]

Write a program that takes at least one command-line argument, where each argument is the name of an executable
to run.

The program should fork a new child for each command-line argument, and the child should call execl to run
the executable named by the argument. (The executable itself takes no arguments.) The child should exit with a
non-zero value if the execl fails.

The parent process should wait for all of its child processes to complete. If all of its child processes exit successfully
with an exit status of 0, the parent prints "Success\n". Otherwise, the parent prints "Failure\n".

Here is an example of how the program could be called:

$./run_all ls date ps

Page 9 of 18

CSC 209H1F Final Examination DECEMBER 2017

Question 7. [6 marks]

Suppose we want to write a program that does the following:

• The parent creates a child process.

• The parent sends the child process a single integer.

• The child multiplies the integer by 2, then sends the result back to the parent.

• The parent prints the result to standard output.

Here is an incorrect implementation of this program. We have omitted error-checking for brevity. Note that lack of
error checking is not the problem.

int main() {

int val, result;

int fd[2];

pipe(fd);

int pid = fork();

if (pid > 0) { // Parent process

val = 10;

write(fd[1], &val, sizeof(int));

close(fd[1]);

} else { // Child process

read(fd[0], &val, sizeof(int));

close(fd[0]);

result = val * 2;

write(fd[1], &result, sizeof(int));

close(fd[1]);

return 0;

}

// Parent process here

read(fd[0], &result, sizeof(int));

close(fd[0]);

printf("result: %d\n", result);

return 0;

}

Part (a) [2 marks]Explain what could go wrong with
the parent process when we run this program.

Part (b) [2 marks]Explain what could go wrong with
the child process when we run this program.

Part (c) [2 marks] Briefly explain how to fix the program.

Page 10 of 18

DECEMBER 2017 Final Examination CSC 209H1F

Question 8. [10 marks]

For each of the statements below, explain one example of what would cause the outcomes or results described in the
comments in each box. Answers must be precise.

result = read(fd, buf, SIZE);

// process blocks

result = read(fd, buf, SIZE);

// result == 0

result = read(fd, buf, SIZE);

// result < SIZE

result = read(fd, buf, SIZE);

// process exits with a segmentation fault

result = write(fd, buf, SIZE);

// process blocks

result = wait(&status);

// process blocks

result = wait(&status);

// returns immediately and result > 0

result = select(maxfd, &rset, NULL, NULL, NULL);

// process blocks

result = accept(fd, &addr, sizeof(addr));

// process blocks

result = accept(fd, &addr, sizeof(addr));

// result > 0

Page 11 of 18

CSC 209H1F Final Examination DECEMBER 2017

Question 9. [9 marks]

Below is an implementation of an interactive client that reads a hostname from standard input, makes a connection
to a server running on PORT, and then reads two pieces of information from the server: the number of users (as a
4-digit null-terminated string), and the average load (as a 4-digit null-terminated string).

Assume connect to server and add host are implemented correctly, and that connect to server will not block.
Error checking is omitted for brevity.

#define MAXHOSTS 10

struct server {

int soc;

char host[64];

char number[5];

char load[5];

};

// Add hostname and soc to an empty slot in servers array.

void add_host(struct server servers, char *hostname, int soc);

// Create a socket and connect to the server at port and hostname. Assume connection succeeds.

int connect_to_server(int port, const char *hostname);

int main() {

fd_set rset, allset;

int maxfd;

char buf[MAXLINE];

struct server servers[10];

// initialize all strings in servers to empty strings, and the soc field to -1

init_server(servers);

FD_ZERO(&allset);

maxfd = 0;

while (1) {

// Get hostname from stdin and make connection

read(fileno(stdin), buf, MAXLINE);

int soc = connect_to_server(PORT, buf);

add_host(servers, buf, soc);

FD_SET(soc, &allset);

if (soc > maxfd) maxfd = soc;

rset = allset;

select(maxfd+1, &rset, NULL, NULL, NULL);

// Check to see which hosts have data ready

for (int i = 0; i < MAXHOSTS; i++) {

if (FD_ISSET(servers[i].soc, &rset)) {

read(servers[i].soc, servers[i].number, 5);

read(servers[i].soc, servers[i].load, 5);

printf("%s: %s %s\n", servers[i].host, servers[i].number, servers[i].load);

}

}

}

}

Page 12 of 18

DECEMBER 2017 Final Examination CSC 209H1F

Part (a) [3 marks]

When we run the program all the output is correct, but we notice that we cannot type in another host name to check
until we have received all of the output from the previous host. There are three problems with the program that
need to be fixed to address this issue. Explain each problem. Failing to check for errors is not a problem with the
code, and all helper functions are correctly implemented.

Part (b) [6 marks]

Fix the code by rewriting it below. You do not need to re-write any code above the call to FD ZERO.

Page 13 of 18

CSC 209H1F Final Examination DECEMBER 2017

Question 9. (continued)

Page 14 of 18

DECEMBER 2017 Final Examination CSC 209H1F

Question 10. [6 marks]

You are given a binary file that contains an array of structs of the type shown below. Complete the following function
according to its documentation.

#define MAXNAME 32

typedef struct {

char name[MAXNAME];

int offset;

int length;

} Inode;

/* Write an Inode containing the fields "name", "offset", and "length" to the

* Inode at index "ind" in the file named "filename". Include appropriate error

* checking to handle the case where "ind" is not a valid index.

* Return 0 if the write was successful, and -1 in the case of error.

* Do not use a loop.

*/

int write_inode(char *filename, int ind, char *name, int offset, int length) {

Page 15 of 18

CSC 209H1F Final Examination DECEMBER 2017

This page can be used if you need additional space for your answers.

Total Marks = 77

Page 16 of 18

DECEMBER 2017 Final Examination CSC 209H1F

C function prototypes and structs:

int accept(int sock, struct sockaddr *addr, int *addrlen)

int bind(int sock, struct sockaddr *addr, int addrlen)

int close(int fd)

int closedir(DIR *dir)

int connect(int sock, struct sockaddr *addr, int addrlen)

int dup2(int oldfd, int newfd)

int execl(const char *path, const char *arg0, ... /*, (char *)0 */);

int execvp(const char *file, char *argv[])

int fclose(FILE *stream)

int FD ISSET(int fd, fd set *fds)

void FD SET(int fd, fd set *fds)

void FD CLR(int fd, fd set *fds)

void FD ZERO(fd set *fds)

char *fgets(char *s, int n, FILE *stream)

int fileno(FILE *stream)

pid t fork(void)

FILE *fopen(const char *file, const char *mode)

/* mode can be "r", "w", "r+", "w+", "a", "a+" */

int fprintf(FILE * restrict stream, const char * restrict format, ...);

size t fread(void *ptr, size t size, size t nmemb, FILE *stream);

int fseek(FILE *stream, long offset, int whence);

/* SEEK_SET, SEEK_CUR, or SEEK_END*/

size t fwrite(const void *ptr, size t size, size t nmemb, FILE *stream);

pid t getpid(void);

pid t getppid(void);

unsigned long int htonl(unsigned long int hostlong) /* 4 bytes */

unsigned short int htons(unsigned short int hostshort) /* 2 bytes */

char *index(const char *s, int c)

int kill(int pid, int signo)

int listen(int sock, int n)

void *malloc(size t size);

unsigned long int ntohl(unsigned long int netlong)

unsigned short int ntohs(unsigned short int netshort)

int open(const char *path, int oflag)

/* oflag is O_WRONLY | O_CREAT for write and O_RDONLY for read */

DIR *opendir(const char *name)

int pipe(int filedes[2])

ssize t read(int d, void *buf, size t nbytes);

struct dirent *readdir(DIR *dir)

int select(int maxfdp1, fd set *readfds, fd set *writefds, fd set *exceptfds, struct timeval *timeout)

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact)

/* actions include SIG_DFL and SIG_IGN */

int sigaddset(sigset t *set, int signum)

int sigemptyset(sigset t *set)

int sigprocmask(int how, const sigset t *set, sigset t *oldset)

/*how has the value SIG BLOCK, SIG UNBLOCK, or SIG SETMASK */

unsigned int sleep(unsigned int seconds)

int socket(int family, int type, int protocol) /* family=PF INET, type=SOCK STREAM, protocol=0 */

int sprintf(char *s, const char *format, ...)

int stat(const char *file name, struct stat *buf)

char *strchr(const char *s, int c)

size t strlen(const char *s)

char *strncat(char *dest, const char *src, size t n)

int strncmp(const char *s1, const char *s2, size t n)

char *strncpy(char *dest, const char *src, size t n)

long strtol(const char *restrict str, char **restrict endptr, int base);

Page 17 of 18

CSC 209H1F Final Examination DECEMBER 2017

int wait(int *status)

int waitpid(int pid, int *stat, int options) /* options = 0 or WNOHANG*/

ssize t write(int d, const void *buf, size t nbytes);

WIFEXITED(status) WEXITSTATUS(status)

WIFSIGNALED(status) WTERMSIG(status)

WIFSTOPPED(status) WSTOPSIG(status)

Useful structs

struct sigaction {
void (*sa handler)(int);

sigset t sa mask;

int sa flags;

}
struct sockaddr in {

sa family t sin family;

unsigned short int sin port;

struct in addr sin addr;

unsigned char pad[8]; /*Unused*/

}

Shell comparison operators

Shell Description

-d filename Exists as a directory

-f filename Exists as a regular file.

-r filename Exists as a readable file

-w filename Exists as a writable file.

-x filename Exists as an executable file.

-z string True if empty string

str1 = str2 True if str1 equals str2

str1 != str2 True if str1 not equal to str2

int1 -eq int2 True if int1 equals int2

-ne, -gt, -lt, -le For numbers

!=, >, >=, <, <= For strings

-a, -o And, or.

Useful Makefile variables:

$@ target

$^ list of prerequisites

$< first prerequisite

$? return code of last program executed

Important environment variables: PATH, PWD, HOME

Useful shell commands:

cat, cut, echo, ls, read, set, sort, test, uniq

ps aux - prints the list of currently running processes

grep (returns 0 if match is found, 1 if no match was found, and 2 if there was an error)

grep -v displays lines that do not match

wc (-clw options return the number of characters, lines, and words respectively)

diff (returns 0 if the files are the same, and 1 if the files differ)

$0 Script name

$# Number of positional parameters

$* List of all positional parameters

"$@" List of all positional parameters where each parameter is quoted

$? Exit value of previously executed command

Page 18 of 18 End of Examination

