
CSC 209H1 S 2017 Midterm Test
Duration — 50 minutes

Aids allowed: none

Student Number:

Last Name: First Name:

Instructor: Reid
Section: L0201 (12:10-1:00pm)

Do not turn this page until you have received the signal to start.
(Please fill out the identification section above, write your name on the back

of the test, and read the instructions below.)
Good Luck!

This midterm consists of 6 questions on 8 pages (including this one). When
you receive the signal to start, please make sure that your copy is complete.
Comments are not required, although they may help us mark your answers.
They may also get you part marks if you can’t figure out how to write the
code.
No error checking is required unless you are specifically requested to do it
for an individual question.
You do not need to provide the include statements for your programs.
If you use any space for rough work, indicate clearly what you want marked.

1: /10

2: / 3

3: / 1

4: / 2

5: / 4

6: / 6

TOTAL: /26

Total Pages = 8 Page 1

CSC 209H1 S 2017

Question 1. [10 marks]

Part (a) [7 marks]

struct award {

char *name;

char **nominees;

};

// Complete the function below that will allocate just enough memory on the heap

// for nominee to store name, and will set nominee to name

void set_nominee(char **nominee, char *name) {

}

int main() {

char line[1024];

// Declare a struct award variable named bp

// Initialize the award’s name to the read-only string "Best Picture"

// Initialize the award’s nominees to refer to heap-allocated space for

// 4 nominees

printf("Enter a film name:\n");

fgets(line, 1024, stdin); // assume line is long enough and fgets succeeds

// Use set_nominee to initialize nominee 0 to the string stored in line

// Use set_nominee to initialize nominee 1 to the read-only string "Moonlight"

return 0;

}

Page 2 of 8

CSC 209H1 S 2017

Part (b) [3 marks]

Check the box beside each of the free statements below that correctly free memory used in the above
program. For each line that is not checked, briefly explan why the statement is incorrect.

� free(bp.name);

� free(bp.nominees[0]);

� free(bp.nominees[1]);

� free(bp.nominees[2]);

� free(bp.nominees);

� free(bp);

Page 3 of 8

CSC 209H1 S 2017

Question 2. [3 marks]

Given the following Makefile

labs.gf : lab1.gf lab2.gf

gather lab1.gf lab2.gf > labs.gf

lab1.gf : lab1.csv classlist

mkgrades lab1.csv < classlist

lab2.gf : lab2.csv classlist

mkgrades lab2.csv < classlist

clean :

rm *.gf

The contents of the current working directory:

lab1.csv lab2.csv classlist

Specfiy which files are created, deleted or modified when the following commands are run in sequence.

Part (a) [1 mark] make lab2.gf

Created Modified Deleted

Part (b) [1 mark] make

Created Modified Deleted

Part (c) [1 mark] Suppose lab1.csv is modified, and then make is run again with no arguments.
Which files are created modified or deleted?

Created Modified Deleted

lab1.gf
lab1.csv
labs.gf

Page 4 of 8

CSC 209H1 S 2017

Question 3. [1 mark]

When I run

gcc -Wall -g -o prog prog.c

I get the error message

/u/reid/tmp/prog.c:5: undefined reference to ‘foo’

Exaplain what I need to do to address this problem.

Question 4. [2 marks]

I spent a long time working on my print ftree program on cdf and it works perfectly, but when I try it
on my Linux machine at home, once it a while it gives me a segmentation fault.

Part (a) [1 mark] Is there a bug in my code? Explain your answer.

Part (b) [1 mark] When does the segmentation fault message appear? Check the appropriate answer
or answers.

� Compile time
�X Run time
� When runnning make print ftree

Page 5 of 8

CSC 209H1 S 2017

Question 5. [4 marks]

For each of the code fragments below, there is missing code. At the very least, the line (or lines) that
declare and possibly initialize the variable x are missing. If the code will not compile no matter what
you put for the missing code, check COMPILE ERROR and explain why. If the code will compile, but is not
guaranteed to run without an error, check RUN-TIME ERROR and explain why. Otherwise, check NO ERROR

and give the correct declaration for x. You don’t need to show any other missing code. The first one is
done for you.

Code Fragment ERROR Declaration for x or explanation

int y; �XNO ERROR

// missing code � COMPILE ERROR int x;

x = y; � RUN-TIME ERROR

char **n = malloc(3*sizeof(char *)); � NO ERROR

// missing code � COMPILE ERROR

strcpy(n[0], x); � RUN-TIME ERROR

char course[7];

x = "csc209"; � NO ERROR

// missing code � COMPILE ERROR

course = x; � RUN-TIME ERROR

char *film = "La La Land"; � NO ERROR

// missing code � COMPILE ERROR

char *x = *film + 6; � RUN-TIME ERROR

// struct definition used

// for the last two snippets

struct Node {

char *fname;

struct Node *next

}

x = malloc(sizeof(struct Node)); � NO ERROR

// missing code � COMPILE ERROR

x.fname = "file1.txt"; � RUN-TIME ERROR

struct Node *root;

root = malloc(sizeof(Node)); � NO ERROR

// missing code � COMPILE ERROR

x = &root->next; � RUN-TIME ERROR

Page 6 of 8

CSC 209H1 S 2017

Question 6. [6 marks]

Complete the function below, so that the following examples will work correctly and the minimum amount
of memory is used. The only string library functions you may use are strlen and strncpy. (You are not
required to use these functions.)

char *path1 = "/";

char *result1 = dirname(path1);

char *path2 = "/usr/include";

char *result2 = dirname(path2);

char path3[9] = "file.txt";

char *result3 = dirname(path3);

char path4[20] = "a2/test/test1.in";

char *result4 = dirname(path4);

printf("%s, %s, %s, %s\n",

result1, result2, result3, result4);

Prints:

/, /usr, ., a2/test

/* Returns the component(s) of path up to but not including the final ’/’

* path will not be NULL

* If there is no ’/’ then dirname returns the string "."

*/

char *dirname(char *path) {

Page 7 of 8

CSC 209H1 S 2017

C function prototypes:

int fclose(FILE *stream)

char *fgets(char *s, int n, FILE *stream)

FILE *fopen(const char *file, const char *mode)

int fprintf(FILE *stream, const char *format, ...)

size t fread(void *ptr, size t size, size t nmemb, FILE *stream)

void free(void *ptr)

int fscanf(FILE *restrict stream, const char *restrict format, ...)

int fseek(FILE *stream, long offset, int whence)

size t fwrite(const void *ptr, size t size, size t nmemb, FILE *stream)

void *malloc(size t size)

DIR *opendir(const char *name)

void perror(const char *s)

int printf(const char *format, ...)

struct dirent *readdir(DIR *dir)

int scanf(const char *restrict format, ...)

int lstat(const char *file name, struct stat *buf)

char *strchr(const char *s, int c)

size t strlen(const char *s)

char *strncat(char *dest, const char *src, size t n)

int strncmp(const char *s1, const char *s2, size t n)

char *strncpy(char *dest, const char *src, size t n)

char *strrchr(const char *s, int c)

char *strstr(const char *haystack, const char *needle)

Excerpt from fgets man page:

fgets() reads in at most one less than size characters from stream and

stores them into the buffer pointed to by s. Reading stops after an

EOF or a newline. If a newline is read, it is stored into the buffer.

A terminating null byte (’\0’) is stored after the last character in

the buffer.

Excerpt from scanf/fscanf man page:

RETURN VALUES

scanf and fscanf return the number of input items assigned. This can be

fewer than provided for, or even zero, in the event of a matching fail-

ure. The value EOF is returned if an input failure occurs before any

conversion such as an end- of-file occurs.

Makefile variables: $@ is the target, $^ is the list of prerequisites $< is the first prerequisite.

Print your name in this box.

Page 8 of 8 End of Examination

