
PLEA
SE

H
A
N
D
IN

UNIVERSITY OF TORONTO
Faculty of Arts and Science

St. George Campus

APRIL 2016 EXAMINATIONS

CSC209H1S
Michelle Craig, David Liu

3 hours
PL
EA
SE

H
A
N
D
IN

No Examination Aids

Student Number:

Last (Family) Name(s):

First (Given) Name(s):

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,

and read the instructions below carefully.)

This final examination consists of 8 questions on 20 pages. A mark of
at least 30 out of 75 on this exam is required to pass this course. When
you receive the signal to start, please make sure that your copy of the
examination is complete.
You are not required to add any #include lines, and unless otherwise
specified, you may assume a reasonable maximum for character arrays or
other structures. Error checking is not necessary unless it is required for
correctness or specifically requested.

Marking Guide

1: /15

2: /13

3: / 7

4: / 7

5: /11

6: / 6

7: /11

8: / 5

TOTAL: /75Good Luck!

Page 1

CSC 209H1S Final Examination APRIL 2016

Question 1. [15 marks]

Part (a) [2 marks]

Your current working directory contains a C program called my_prog.c, as well as some other files. Write the
fragment of a bash shell program that checks if the file my_prog exists in the current directory, and if it does not,
then compiles my_prog.c into an executable called my_prog, using the c99 standard.

Part (b) [2 marks]

The file classlist has the format shown in the
box on the right. Write a single-line shell com-
mand to assign the number of students in section
L0101 to the shell variable NOONSIZE.

990876234 Liu, Sid L0101

1090876234 Chan, Vic L5101

1480876134 Huynh, Elaine L0201

...

Part (c) [5 marks] Write a shell script to do the following:

• Use a shell loop through the numbers 1 through 50, inclusive.

• If the number is less than 25, print it to the console.

• If the number is 25 or greater, run my_prog with the number as a command-line argument, and redirect its
standard output to a file called “X.out”, where X is replaced by the number.

So when the script is run, the numbers 1, 2, 3, ..., 24 should be printed to the screen, and the current directory
should contain the files 25.out, 26.out, ..., 50.out.

Page 2 of 20

APRIL 2016 Final Examination CSC 209H1S

Part (d) [4 marks]

Here is one line of output from running ls -1 on the current directory.

-rwxr-x--- 1 liudavid instrs 8377 Apr 11 10:53 my_prog

Explain what you know about the permissions on the my_prog file.

Now show the output if you were to run these two commands on current directory.

chmod 641 my_prog; ls -l my_prog

Part (e) [2 marks]

Suppose we switch to a new directory which has the three files cat.c, dog.c, and pet.h, as well as a Makefile with
the following contents:

all: cat snake

cat: cat.o dog.o

gcc -o $@ $^

snake: dog.o

echo I am a snake > snake

%.o: %.c pet.h

gcc -c $<

The directory has no other files. Suppose the following commands are run one after the other. Fill in the table to
show what files are created or modified as a result of running each command. If no files are created or modified after
a particular command, write “NO CHANGE”.

Command Names of files created or changed

make snake

make

Page 3 of 20

CSC 209H1S Final Examination APRIL 2016

Question 2. [13 marks]

Some of the code fragments below have a problem. For each fragment indicate whether the code works as intended
or whether there is an error (logical error, compile-time error/warning, or runtime error). Assume all programs are
compiled using the C99 standard. For this question, we’ll assume programs which do not terminate are errors as
well. If there is an error in a fragment, explain briefly what is wrong in the box. We have intentionally omited the
error checking of the system calls to simplify the examples. Do not report this as an error.

Some of the parts will use the following struct definition:

struct student {

int age;

char *name;

}

Part (a)

char *s = "Hello";

strcat(s, ", World!");

Works as intended Error

Part (b)

int main(int argc, char **argv) {

char ch;

char *p = &ch;

ch = argv[argc-1][0];

printf("%c\n", p[0]);

return 0;

}

Works as intended Error

Page 4 of 20

APRIL 2016 Final Examination CSC 209H1S

Part (c)

struct student hannah;

strcpy(hannah.name, "Hannah");

Works as intended Error

Part (d)

struct student hannah = NULL;

// ... missing code ...

if (hannah != NULL) {

hannah.age = 10;

}

Works as intended Error

Part (e)

// Increase the age of a student by amt.

void increase_age(struct student s, int amt) {

s.age += amt;

}

int main() {

struct student rob;

rob.age = 10;

increase_age(rob, 5);

printf("%d should be 15\n", rob.age);

}

Works as intended Error

Page 5 of 20

CSC 209H1S Final Examination APRIL 2016

Part (f)

// Compute the sum of an array of integers

int compute_sum(int numbers[]) {

int sum = 0;

for (int i = 0; i < sizeof(numbers); i++) {

sum += numbers[i];

}

return sum;

}

Works as intended Error

Part (g)

int fd[2];

int result = fork();

pipe(fd);

if (result == 0) {

close(fd[0]);

write(fd[1], "csc209", 7);

} else {

close(fd[1]);

char buf[7];

read(fd[0], buf, 7);

printf("%s\n", buf);

}

exit(0);

Works as intended Error

Page 6 of 20

APRIL 2016 Final Examination CSC 209H1S

Part (h)

// Read all bytes from the file descriptors in ‘fds’ as characters,

// and print them. ‘num_fds’ is the number of file descriptors, and

// ‘max_fd’ is the value of the largest one.

void read_ints(int *fds, int num_fds, int max_fd) {

char data;

fd_set set;

FD_ZERO(&set);

for (int i = 0; i < num_fds; i++) {

FD_SET(fds[i], &set);

}

while (select(max_fd + 1, &set, NULL, NULL, NULL) > 0) {

for (int i = 0; i < num_fds; i++) {

if (FD_ISSET(fds[i], &set)) {

if (read(sum, &data, 1) > 0) {

printf("%c\n", data);

}

}

}

}

}

Works as intended Error

Page 7 of 20

CSC 209H1S Final Examination APRIL 2016

Part (i)

struct node {

int item;

struct node *next;

}

// Compute the sum of the items in a linked list with the given head,

// but do not modify the list.

int sum(struct node *head) {

int s = 0;

while (head != NULL) {

s += head->item;

*head = *(head->next);

}

return s;

}

Works as intended Error

Part (j)

// Remove the dots from word

char *word = "Ex.ampl.e";

char *result = malloc(strlen(word) + 1); // upper-limit if word has no dots

for (int i = 0; i < strlen(word); i++) {

if (word[i] != ’.’) {

strncat(result, word[i], 1);

}

}

Works as intended Error

Page 8 of 20

APRIL 2016 Final Examination CSC 209H1S

Question 3. [7 marks]

Below is a simple C program. In the space below the program, draw a complete memory diagram showing all of
the memory allocated immediately before fun returns. Clearly distinguish between the different sections of memory
(stack, heap, global), as well as different stack frames. You must show where each variable is stored, but make sure
it’s clear in your diagram what is a variable name vs. the value stored for that variable. You may show a pointer
value by drawing an arrow to the location in memory with that address.

int *fun(char *ptr) {

int *int_ptr = malloc(sizeof(int));

if (ptr[0] == ’Z’) {

*int_ptr = 1;

} else {

*int_ptr = 5;

*ptr = ’Z’;

}

// Draw the memory at this point in the execution

return int_ptr;

}

int main() {

char letters[4] = "abc";

int *x;

x = fun(letters);

return *x;

}

Page 9 of 20

CSC 209H1S Final Examination APRIL 2016

Question 4. [7 marks]

Write a program which takes a single command-line argument, which is the name of a text file. The program should
open the file, and replace every occurrence of the character ’a’ (but not ’A’) with the character ’Z’, leaving all
other characters unchanged.

Example run, if the program is called replacer:

> echo "All sunshine and rainbows :)" > data.txt

> replacer data.txt

> cat data.txt

All sunshine Znd rZinbows :)

You may not read in more than one character from the file at a time, and in particular do not try to read in the
whole file as a single string, as it may be extremely large. You may not use any other files. We are looking for how
you use multiple reads, writes, and seeks with the file to accomplish this task by changing the existing file.

You must use binary I/O commands in your program.

Do not write any include statements or perform error-checking; you may assume that the name of a readable and
writable text file is always given as the argument.

Page 10 of 20

APRIL 2016 Final Examination CSC 209H1S

In the previous program, you were instructed that you must use binary I/O. Could the program have been written
using character I/O statements? (check one) Yes No

If you answered yes, in the box below write one binary I/O statement that you used in your code and below it, write
the character I/O statement that would need to replace it if you were to change your solution to use character I/O.
(You may feel that there are multiple statements that need to change. Just show us one.)

If you answered no, explain why the problem could not be solved using character I/O.

Question 5. [11 marks]

Part (a) [3 marks] Consider the following simple program.

int main() {

if (fork() == 0) {

printf("[CHILD] I’m exiting!\n");

} else {

wait(NULL);

printf("[PARENT] Child exited\n");

}

return 0;

}

David says, “Because the parent code comes after the child code, the entire child code will execute before any of
the parent code. But then the child will exit before the parent calls wait, which means wait will block indefinitely,
causing the program to never terminate.” There are multiple false claims in what David said. Identify all of them
and explain why they are wrong, and then explain what actually happens when this program is run.

Page 11 of 20

CSC 209H1S Final Examination APRIL 2016

Part (b) [2 marks]

Here is an incorrect attempt to communicate between a child and parent process.

int main() {

int data;

if (fork() == 0) {

data = 10;

} else {

wait(NULL);

printf("%d should equal 10\n", data); // Child has set data and exited.

}

exit(0);

}

Explain what the problem is, and what happens when the program runs.

Part (c) [3 marks]

We have seen in lecture how to use execl to change the behaviour of a running process. Which of the following
properties of a process change when execl is called? (Select all that apply.)

the PID

the open file-descriptors

the set of instructions to execute

the parent’s PID

the instruction pointer indicating which instruction to execute next

the values of the variables already in memory

Part (d) [3 marks]

We have also seen how to use fork to create a new process. Which of the following properties are different between
the parent and child processes right after fork returns, but before its return value is assigned to a variable? (Select
all that apply.)

the PID

the open file-descriptors

the set of instructions to execute

the parent’s PID

the instruction pointer indicating which instruction to execute next

the values of the variables already in memory

Page 12 of 20

APRIL 2016 Final Examination CSC 209H1S

Question 6. [6 marks]

Write a funtion convert whose first parameter is an array of strings and second parameter is the number of elements
in this array. Your function should return a string that is the reverse of a longest string in the array (any longest
will do in the case of a tie) or NULL if the array was empty. You must not change the strings in the array. You may
assume all the strings in the array are null-terminated.

Page 13 of 20

CSC 209H1S Final Examination APRIL 2016

Question 7. [11 marks]

In this question you will write a program that forks processes that communicate with signals.

Your program must fork two children. One child sends a SIGUSR1 signal to the other child approximately every
second (use sleep(1) between sending the signals). The other child does nothing except print numbers to standard
out from 1 to 10000. But every time a SIGUSR1 signal arrives, it prints "quit poking me" to standard error. When
its counting is finished, this child exits with the number of times it was poked as the exit code.

Once the child receiving the pokes has exited, the parent must report the number of pokes (by printing a message
to standard output) and then kill the child doing the poking.

Part (a) [1 mark]

Select the true statement below and then explain your reasoning.

The child that does the poking must be forked first.

The child that does the poking must be forked second.

It doesn’t matter in which order the children are forked; the program could be written to work in either way.

Explanation:

Part (b) [10 marks]

Write your program here and on the next page. Do not write the include statements or include error checking on
your system calls. You must write comments so that the marker can clearly see what you are trying to do.

Page 14 of 20

APRIL 2016 Final Examination CSC 209H1S

Page 15 of 20

CSC 209H1S Final Examination APRIL 2016

Question 8. [5 marks]

These questions concern the client-server model we discussed in lecture.

Part (a) [1 mark]

Explain the role of the server in the client-server model.

Part (b) [1 mark]

Explain the role of the client in the client-server model.

Part (c) [1 mark]

What is the advantage of using the client-server model over simply forking processes and using pipes?

Part (d) [1 mark]

Why do we need to specify a port number in the server process?

Part (e) [1 mark]

The server uses the accept system call to establish a connection with a client. The prototype of the system call is

int accept(int sockfd, struct sockaddr *client, socklen_t *addrlen)

It both takes in a file descriptor and returns a file descriptor. What is the purpose of the file descriptor it returns;
i.e., how is it used by the server process?

Page 16 of 20

APRIL 2016 Final Examination CSC 209H1S

This page can be used if you need additional space for your answers.

Page 17 of 20

CSC 209H1S Final Examination APRIL 2016

This page can be used if you need additional space for your answers.

Total Marks = 75

Page 18 of 20

APRIL 2016 Final Examination CSC 209H1S

C function prototypes and structs:

int accept(int sock, struct sockaddr *addr, int *addrlen)

char *asctime(const struct tm *timeptr)

int bind(int sock, struct sockaddr *addr, int addrlen)

int close(int fd)

int closedir(DIR *dir)

int connect(int sock, struct sockaddr *addr, int addrlen)

char *ctime(const time t *clock); int dup2(int oldfd, int newfd)

int execl(const char *path, const char *arg0, ... /*, (char *)0 */);

int execvp(const char *file, char *argv[])

int fclose(FILE *stream)

int FD ISSET(int fd, fd set *fds)

void FD SET(int fd, fd set *fds)

void FD CLR(int fd, fd set *fds)

void FD ZERO(fd set *fds)

char *fgets(char *s, int n, FILE *stream)

int fileno(FILE *stream)

pid t fork(void)

FILE *fopen(const char *file, const char *mode)

int fprintf(FILE * restrict stream, const char * restrict format, ...);

size t fread(void *ptr, size t size, size t nmemb, FILE *stream);

int fseek(FILE *stream, long offset, int whence);

/* SEEK_SET, SEEK_CUR, or SEEK_END*/

size t fwrite(const void *ptr, size t size, size t nmemb, FILE *stream);

pid t getpid(void);

pid t getppid(void);

unsigned long int htonl(unsigned long int hostlong) /* 4 bytes */

unsigned short int htons(unsigned short int hostshort) /* 2 bytes */

char *index(const char *s, int c)

int kill(int pid, int signo)

int listen(int sock, int n)

void *malloc(size t size);

unsigned long int ntohl(unsigned long int netlong)

unsigned short int ntohs(unsigned short int netshort)

int open(const char *path, int oflag)

/* oflag is O_WRONLY | O_CREAT for write and O_RDONLY for read */

DIR *opendir(const char *name)

int pclose(FILE *stream)

int pipe(int filedes[2])

FILE *popen(char *cmdstr, char *mode)

ssize t read(int d, void *buf, size t nbytes);

struct dirent *readdir(DIR *dir)

int select(int maxfdp1, fd set *readfds, fd set *writefds, fd set *exceptfds, struct timeval *timeout)

int sigaction(int signum, const struct sigaction *act, struct sigaction *oldact)

/* actions include SIG_DFL and SIG_IGN */

int sigaddset(sigset t *set, int signum)

int sigemptyset(sigset t *set)

int sigprocmask(int how, const sigset t *set, sigset t *oldset)

/*how has the value SIG BLOCK, SIG UNBLOCK, or SIG SETMASK */

unsigned int sleep(unsigned int seconds)

int socket(int family, int type, int protocol) /* family=PF INET, type=SOCK STREAM, protocol=0 */

int sprintf(char *s, const char *format, ...)

int stat(const char *file name, struct stat *buf)

char *strchr(const char *s, int c)

size t strlen(const char *s)

char *strncat(char *dest, const char *src, size t n)

int strncmp(const char *s1, const char *s2, size t n)

char *strncpy(char *dest, const char *src, size t n)

Page 19 of 20

CSC 209H1S Final Examination APRIL 2016

long strtol(const char *restrict str, char **restrict endptr, int base);

int wait(int *status)

int waitpid(int pid, int *stat, int options) /* options = 0 or WNOHANG*/

ssize t write(int d, const void *buf, size t nbytes);

WIFEXITED(status) WEXITSTATUS(status)

WIFSIGNALED(status) WTERMSIG(status)

WIFSTOPPED(status) WSTOPSIG(status)

Useful structs

struct sigaction {
void (*sa handler)(int);

sigset t sa mask;

int sa flags;

}
struct hostent {

char *h name; // name of host

char **h aliases; // alias list

int h addrtype; // host address type

int h length; // length of address

char *h addr; // address

}
struct sockaddr in {

sa family t sin family;

unsigned short int sin port;

struct in addr sin addr;

unsigned char pad[8]; /*Unused*/

}

struct stat {
dev t st dev; /* ID of device containing file */

ino t st ino; /* inode number */

mode t st mode; /* protection */

nlink t st nlink; /* number of hard links */

uid t st uid; /* user ID of owner */

gid t st gid; /* group ID of owner */

dev t st rdev; /* device ID (if special file) */

off t st size; /* total size, in bytes */

blksize t st blksize; /* blocksize for file system I/O */

blkcnt t st blocks; /* number of 512B blocks allocated */

time t st atime; /* time of last access */

time t st mtime; /* time of last modification */

time t st ctime; /* time of last status change */

};

Shell comparison operators

Shell Description

-d filename Exists as a directory

-f filename Exists as a regular file.

-r filename Exists as a readable file

-w filename Exists as a writable file.

-x filename Exists as an executable file.

-z string True if empty string

str1 = str2 True if str1 equals str2

str1 != str2 True if str1 not equal to str2

int1 -eq int2 True if int1 equals int2

-ne, -gt, -lt, -le For numbers

!=, >, >=, <, <= For strings

-a, -o And, or.

Useful Makefile variables:

$@ target

$^ list of prerequisites

$< first prerequisite

$? return code of last program executed

Useful shell commands:

cat, cut, echo, ls, read, sort, uniq, set

ps aux - prints the list of currently running processes

grep (returns 0 if match is found, 1 if no match was found, and 2 if there was an error)

grep -v displays lines that do not match

wc (-clw options return the number of characters, lines, and words respectively)

diff (returns 0 if the files are the same, and 1 if the files differ)

$0 Script name

$# Number of positional parameters

$* List of all positional parameters

$? Exit value of previously executed command

Page 20 of 20 End of Examination

