
PLEA
SE

H
A
N
D
IN

UNIVERSITY OF TORONTO
Faculty of Arts and Science

DECEMBER 2013 EXAMINATIONS

CSC 207/B07 F
Instructors: Campbell and Tafliovich

Duration — 3 hours
PL
EA
SE

H
A
N
D
IN

Examination Aids: None

Student Number:

Family Name(s):

Given Name(s):

Do not turn this page until you have received the signal to start.
In the meantime, please read the instructions below carefully.

You must get 40% or above on this exam to pass the course (at least 39.2
out of 98); otherwise, your final course grade will be no higher than 47.
This final examination paper consists of 12 questions on 22 pages (including
this one). When you receive the signal to start, please make sure that your
copy of the final examination is complete.

• Legibly write your name and student number on this page.

• Legibly write your student number at the bottom of every odd page
(except this one), in the space provided.

• If you use any space for rough work, indicate clearly what you want
marked.

• In all programming questions you may assume all input is valid.

• You do not need to write Javadocs or internal comments.

1: / 8

2: /10

3: /10

4: / 8

5: / 4

6: / 8

7: /12

8: / 6

9: /10

10: / 8

11: / 6

12: / 8

TOTAL: /98

Page 1 of 22 Good Luck! cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 1. [8 marks]

For each question below, a correct answer earns 2 marks, “I don’t know” earns 0 marks, and an incorrect
answer earns -1 mark. Do not guess.

Part (a) [2 marks] Consider the following program.

public class MyProgram {

public static void throwit() {

throw new RuntimeException();

}

public static void main(String args[]) {

try {

System.out.println("Hello!");

throwit();

System.out.println("Done!");

} finally {

System.out.println("Finally!");

}

}

}

Which of the following most closely describes the behaviour of the program above? Circle one.

a. The program will not compile.

b. Print Hello!, then report a RuntimeException, then print Done!, then print Finally!.

c. Print Hello!, then report a RuntimeException, then print Finally!,

d. Print Hello!, then print Finally!, then report a RuntimeException.

e. I don’t know.

Part (b) [2 marks] Consider the following program.

public class MyProgram {

public static void throwit() {

throw new Exception();

}

public static void main(String args[]) {

try {

System.out.println("Hello!");

throwit();

System.out.println("Done!");

} finally {

System.out.println("Finally!");

}

}

}

Which of the following most closely describes the behaviour of the program above? Circle one.

a. The program will not compile.

b. Print Hello!, then report an Exception, then print Done!, then print Finally!.

c. Print Hello!, then report an Exception, then print Finally!,

d. Print Hello!, then print Finally!, then report an Exception.

e. I don’t know.

Page 2 of 22 cont’d. . .

December 2013 Final Examination CSC207/B07F

Part (c) [2 marks] Consider this program.

public class TryIt {

public static void main (String [] args) {

Integer i = new Integer(42);

Integer j = new Integer(42);

System.out.println((i == j) + " " + i.equals(j));

}

}

What is the output of the program above? Circle one.

a. true true

b. true false

c. false true

d. false false

e. I don’t know.

Part (d) [2 marks] Consider this program.

public class Document {

public static int quantity = 0;

public Document() {

quantity = quantity + 1;

}

public static int getQuantity() {

return quantity;

}

}

public class Book extends Document {

private int numChapters;

public Book(int numChapters) {

this.numChapters = numChapters;

}

public static void main(String[] args) {

Book b1 = new Book(4);

Book b2 = new Book(6);

Document d1 = new Document();

System.out.println(Document.getQuantity());

}

}

What is the output of the program above? Circle one.

a. 0

b. 1

c. 2

d. 3

e. I don’t know.

Page 3 of 22 Student #: cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 2. [10 marks]

Consider the following Java code.

public interface Circle {

public double getArea();

}

public class ThisCircle implements Circle {

private double radius;

public static double getArea(double r) {

return Math.PI * r * r;

}

public double getArea() {

return getArea(this.radius);

}

}

public abstract class Triangle {

public static double getArea(double b,

double h) {

return b * h / 2;

}

}

public class IsoscelesTriangle extends Triangle {

private double base, height;

}

Page 4 of 22 cont’d. . .

December 2013 Final Examination CSC207/B07F

For each of the code fragments below, circle one answer. A correct answer earns 1 mark, “I don’t know”
earns 0 marks, and an incorrect answer earns -0.5 marks. Do not guess.

1. interface FunnyCircle implements Circle {}
compiles does not compile I don’t know

2. interface FunnyCircle extends Circle {public double approxArea();}
compiles does not compile I don’t know

3. interface ColouredCircle extends Circle {private String colour;}
compiles does not compile I don’t know

4. class FunnyTriangle extends Triangle {

public double wrongArea(double b, double h) {

return getArea(b, h) * 42;

}

}

compiles does not compile I don’t know

5. class Strange extends Triangle implements Circle {

double x;

public double getArea() {

return getArea(x, x);

}

}

compiles does not compile I don’t know

Page 5 of 22 Student #: cont’d. . .

December 2013 Final Examination CSC207/B07F

6. public class Main {

public static void main (String [] args) {

Circle c = new ThisCircle();

}

}

compiles does not compile I don’t know

7. public class Main {

public static void main (String [] args) {

IsoscelesTriangle t = new Triangle();

}

}

compiles does not compile I don’t know

8. public class Main {

public static void main (String [] args) {

Triangle t = new IsoscelesTriangle();

}

}

compiles does not compile I don’t know

9. public class Main {

public static void main (String [] args) {

System.out.println((new IsoscelesTriangle()).base);

}

}

compiles does not compile I don’t know

10. public class Main {

public static void main (String [] args) {

System.out.println((new IsoscelesTriangle()).getArea(4.2));

}

}

compiles does not compile I don’t know

Page 6 of 22 cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 3. [10 marks]

In the space provided on the next page, give the output of the following program. You may use the bottom
part of the next page for rough work. You may want to draw the Java memory model to help you trace the
program. This model will not be graded; only the output of the program will be considered for grading.

public class A {

public int i = 0;

public static String s = "";

public A(int i) {

System.out.println(i);

s += "x";

}

public A debug() {

if (this instanceof B) {

System.out.println("Spam");

s += "s";

}

return this;

}

}

public class B extends A {

public int i = 100;

public static String s = "s";

public B(int i, String s) {

super(i);

this.i += 5;

this.s = s;

}

public static void main (String [] argv) {

String s = "";

B b = new B(0, s);

System.out.println(b.i + " " + b.s);

s += "foo";

A a = new B(42, s);

System.out.println(a.i + " " + a.s);

System.out.println(b.debug().s + " " + b.i + " " + b.s);

System.out.println(a.debug().s + " " + a.i + " " + a.s);

}

}

Page 7 of 22 Student #: cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 3. (continued)

Program output:

The space below is for rough work. Work written below will not be marked.

Page 8 of 22 cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 4. [8 marks]

The following questions are related to Android application development. For each question below, a correct
answer earns 2 marks, “I don’t know” earns 0 marks, and an incorrect answer earns -1 mark. Do not
guess.

Part (a) [2 marks]

Name the Android type that is used to pass data between two Activitys.

Answer: or I don’t know

Part (b) [2 marks]

Name an interface that a class must implement in order for instances of that class to be passed between
Activitys:

Answer: or I don’t know

Part (c) [2 marks]

Name the XML field that needs to be set in order to associate a particular Java method with a Button

click event.

Answer: or I don’t know

Part (d) [2 marks]

A file is created in the default internal storage location for an application on a particular emulator. When
that emulator is shut-down and relaunched, will the file persist? Circle one.

yes no I don’t know

Question 5. [4 marks]

Complete the table below by naming the artifact from your course project that correponds to the artifact
from Scrum. If relevant, specify which project phase. For each question below, a correct answer earns 1
mark, “I don’t know” earns 0 marks, and an incorrect answer earns -0.5 marks. Do not guess.

Artifact from Scrum Corresponding artifact from your course project

Scrum Meeting or I don’t know

Planning Meeting or I don’t know

Product Backlog or I don’t know

Sprint Backlog or I don’t know

Page 9 of 22 Student #: cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 6. [8 marks]

Part (a) [2 marks] Write all strings that match this regular expression: x?(0|1)y

Part (b) [2 marks] Write a regular expression for a username of this form: c or g, followed by one
digit, and followed by 1 to 6 lowercase letters.

Part (c) [2 marks]For each string below, circle the right answer to indicate whether or not it matches
the regular expression: [ab]c*d+e?

abcde matches does not match

ad matches does not match

acccdddde matches does not match

accddee matches does not match

Part (d) [2 marks]For each string below, circle the right answer to indicate whether or not it matches
the regular expression: ([a-z0-9_\.-]+)@([a-z\.]+)\.([a-z]){2,6}

aa@bb.cc matches does not match

12+@34+.abc matches does not match

baker@yummy.apple.pie.com matches does not match

123.abc...@..com matches does not match

Page 10 of 22 cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 7. [12 marks]

In this question you will implement a bounded stack – a stack with a fixed capacity. In addition, the stack
is only allowed to hold objects of the same type. You will accomplish this using Java generics. Here is an
example use of the class BoundedStack that you will write.

public class UseStack {

public static void main (String [] argv) {

BoundedStack<String> s =

new BoundedStack<String>(2, new ArrayList<String>());

try {

s.push("foo");

s.push("bar");

s.push("won’t fit");

} catch (StackFullException e) {

System.out.println("Stack is full!");

}

try {

System.out.println(s.pop());

System.out.println(s.pop());

s.pop();

} catch (StackEmptyException e) {

System.out.println("Stack is empty!");

}

}

}

This program should produce the following output:

Stack is full!

bar

foo

Stack is empty!

You may assume that StackFullException and StackEmptyException have been implemented as sub-
classes of Exception.

Complete the implementation of BoundedStack. Do not forget that this class should be generic. Do not
use Java’s Stack type. Use a List in your implementation.

// Complete the class declaration.

public class {

// Add instance variables, if needed.

Page 11 of 22 Student #: cont’d. . .

December 2013 Final Examination CSC207/B07F

/**

* Constructs a new BoundedStack with capacity cap with initial content con.

* @param cap the capacity of the new BoundedStack.

* @param con the initial content of the new BoundedStack.

*/

/**

* Removes and returns the item that was added last to this BoundedStack.

* @return the item that was added last to this BoundedStack.

* @throws StackEmptyException if this BoundedStack is empty.

*/

/**

* Pushes item onto this BoundedStack.

* @param item the item to push onto this BoundedStack.

* @throws StackFullException if the BoundedStack is at capacity.

*/

}

Page 12 of 22 cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 8. [6 marks]

This question uses class BoundedStack from the previous question. Write JUnit methods to test that
BoundedStack’s method push works correctly.

public class BoundedStackTest {

}

Page 13 of 22 Student #: cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 9. [10 marks]

This question uses class BoundedStack from the previous two questions. You will now use the iterator
design pattern to add iterator support for BoundedStack. Here is an example use of a foreach loop to
iterate over the elements of a BoundedStack:

BoundedStack<Integer> st =

new BoundedStack<Integer>(3, new ArrayList<Integer>());

for (int i = 0; i < 3; i++) {

st.push(i);

}

for (Integer i : st) {

for (Integer j : st) {

System.out.print("(" + i + " " + j + ") ");

}

}

The above snippet of code should produce the following output:

(2 2) (2 1) (2 0) (1 2) (1 1) (1 0) (0 2) (0 1) (0 0)

Notice that the items are visited in the order in which they would be popped, i.e. a last-in-first-visited
order.

Part (a) [1 mark]

Show how you need to modify the declaration of BoundedStack.

public class

Part (b) [9 marks]

Now add whatever is necessary to the class BoundedStack to ensure that the foreach loop above works.
You may continue on the next page.

Page 14 of 22 cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 9. (continued)

Page 15 of 22 Student #: cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 10. [8 marks]

Recall the Strategy Design Pattern.

Consider the following problem. You need to design a software system that deals with calculating car
insurance premiums for auto insurance companies. Car insurance premiums are calculated based upon
something called a risk factor, which is a number (a double) that predicts how likely it is that a customer
with a particular set of circumstances will make a claim. There are several ways the risk factor could be
calculated for a customer, including (a) based on customer’s credit rating, (b) based on customer’s place
of residence, and (c) based on the car make and model. The risk factor is used to calculate, among other
things, the car insurance premiums (a double) and how much a possible claim will likely cost (a double).

Draw a UML class diagram that represents your solution to the above problem using the Strategy design
pattern.

Page 16 of 22 cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 11. [6 marks]

Consider the following Java implementation of an AirConditioner class that makes use of a BasicThermostat.

public class AirConditioner {

/** This AirConditioner’s thermostat. */

private BasicThermostat thermostat;

/**

* Creates a new AirConditioner.

*/

public AirConditioner() {

thermostat = new BasicThermostat();

}

/**

* Turns on this AirConditioner if necessary.

*/

public boolean turnOn() {

if thermostat.aboveTarget() { ... }

else { ... }

}

public class BasicThermostat {

/** This BasicThermostat’s target temperature. */

private double targetTemperature;

/**

* Creates a new BasicThermostat.

*/

public BasicThermostat() {}

/**

* Sets the target temperature of this BasicThermostat to temperature.

* @param temperature the new target temperature of this BasicThermostat.

*/

public void setTemperature(double temperature) { ... }

/**

* Returns whether the current temperature is above target.

* @retrun true, if the current temperature is above target,

* and false, otherwise.

*/

public boolean aboveTarget() { ... }

}

Page 17 of 22 Student #: cont’d. . .

December 2013 Final Examination CSC207/B07F

Part (a) [1 mark]

Name the OO Design Principle that this design violates.

Part (b) [5 marks]

Provide a UML class diagram of a good solution that addresses the problem you identified in the previous
part.

Page 18 of 22 cont’d. . .

December 2013 Final Examination CSC207/B07F

Question 12. [8 marks]

In Phases I, II, and III of the team project, you developed an object-oriented design of a hospital emergency
room triage application.

Provide two examples of poor design decisions you made while designing the application. Explain why
these were poor design choices. Avoid generic statements, such as “We used too few classes.” or “It
was not modular.”. Instead, explain specifically what problems you encountered during your implementa-
tion/development as a result of the poor design choices.

Poor design decision #1:

Consequences of poor design decision #1:

Poor design decision #2:

Consequences of poor design decision #2:

Total Marks = 98

Page 19 of 22 Student #: cont’d. . .

December 2013 Final Examination CSC207/B07F

[Use the space below for rough work. This page will not be marked, unless you clearly indicate the part
of your work that you want us to mark.]

Page 20 of 22 cont’d. . .

December 2013 Final Examination CSC207/B07F

Short Java APIs:

class Throwable:

// the superclass of all Errors and Exceptions

Throwable getCause() // returns the Throwable that caused this Throwable to get thrown

String getMessage() // returns the detail message of this Throwable

StackTraceElement[] getStackTrace() // returns the stack trace info

class Exception extends Throwable:

Exception(String m) // constructs a new Exception with detail message m

Exception(String m, Throwable c) // constructs a new Exception with detail message m caused by c

class RuntimeException extends Exception:

// The superclass of exceptions that don’t have to be declared to be thrown

class Error extends Throwable

// something really bad

class Object:

String toString() // returns a String representation

boolean equals(Object o) // returns true iff "this is o"

interface Comparable<T>:

int compareTo(T o) // returns < 0 if this < o, = 0 if this is o, > 0 if this > o

interface Iterable<T>:

// Allows an object to be the target of the "foreach" statement.

Iterator<T> iterator()

interface Iterator<T>:

// An iterator over a collection.

boolean hasNext() // returns true iff the iteration has more elements

T next() // returns the next element in the iteration

void remove() // removes from the underlying collection the last element returned or

// throws UnsupportedOperationException

interface Collection<E> extends Iterable<E>:

boolean add(E e) // adds e to the Collection

void clear() // removes all the items in this Collection

boolean contains(Object o) // returns true iff this Collection contains o

boolean isEmpty() // returns true iff this Collection is empty

Iterator<E> iterator() // returns an Iterator of the items in this Collection

boolean remove(E e) // removes e from this Collection

int size() // returns the number of items in this Collection

Object[] toArray() // returns an array containing all of the elements in this collection

interface List<E> extends Collection<E>, Iteratable<E>:

// An ordered Collection. Allows duplicate items.

boolean add(E elem) // appends elem to the end

void add(int i, E elem) // inserts elem at index i

boolean contains(Object o) // returns true iff this List contains o

E get(int i) // returns the item at index i

int indexOf(Object o) // returns the index of the first occurrence of o, or -1 if not in List

boolean isEmpty() // returns true iff this List contains no elements

E remove(int i) // removes the item at index i

int size() // returns the number of elements in this List

class ArrayList<E> implements List<E>

interface Map<K,V>:

// An object that maps keys to values.

boolean containsKey(Object k) // returns true iff this Map has k as a key

boolean containsValue(Object v) // returns true iff this Map has v as a value

V get(Object k) // returns the value associated with k, or null if k is not a key

boolean isEmpty() // returns true iff this Map is empty

Page 21 of 22 Student #: cont’d. . .

December 2013 Final Examination CSC207/B07F

Set<K> keySet() // returns the Set of keys of this Map

V put(K k, V v) // adds the mapping k -> v to this Map

V remove(Object k) // removes the key/value pair for key k from this Map

int size() // returns the number of key/value pairs in this Map

Collection<V> values() // returns a Collection of the values in this Map

class HashMap<K,V> implements Map<K,V>

class File:

File(String pathname) // constructs a new File for the given pathname

class Scanner:

Scanner(File file) // constructs a new Scanner that scans from file

void close() // closes this Scanner

boolean hasNext() // returns true iff this Scanner has another token in its input

boolean hasNextInt() // returns true iff the next token in the input is can be

// interpreted as an int

boolean hasNextLine() // returns true iff this Scanner has another line in its input

String next() // returns the next complete token and advances the Scanner

String nextLine() // returns the next line and advances the Scanner

int nextInt() // returns the next int and advances the Scanner

class Integer implements Comparable<Integer>:

static int parseInt(String s) // returns the int contained in s

throw a NumberFormatException if that isn’t possible

Integer(int v) // constructs an Integer that wraps v

Integer(String s) // constructs on Integer that wraps s.

int compareTo(Object o) // returns < 0 if this < o, = 0 if this == o, > 0 otherwise

int intValue() // returns the int value

class String implements Comparable<String>:

char charAt(int i) // returns the char at index i.

int compareTo(Object o) // returns < 0 if this < o, = 0 if this == o, > 0 otherwise

int compareToIgnoreCase(String s) // returns the same as compareTo, but ignores case

boolean endsWith(String s) // returns true iff this String ends with s

boolean startsWith(String s) // returns true iff this String begins with s

boolean equals(String s) // returns true iff this String contains the same chars as s

int indexOf(String s) // returns the index of s in this String, or -1 if s is not a substring

int indexOf(char c) // returns the index of c in this String, or -1 if c does not occur

String substring(int b) // returns a substring of this String: s[b ..]

String substring(int b, int e) // returns a substring of this String: s[b .. e)

String toLowerCase() // returns a lowercase version of this String

String toUpperCase() // returns an uppercase version of this String

String trim() // returns a version of this String with whitespace removed from the ends

class System:

static PrintStream out // standard output stream

static PrintStream err // error output stream

static InputStream in // standard input stream

class PrintStream:

print(Object o) // prints o without a newline

println(Object o) // prints o followed by a newline

class Pattern:

static boolean matches(String regex, CharSequence input) // compiles regex and returns

// true iff input matches it

static Pattern compile(String regex) // compiles regex into a pattern

Matcher matcher(CharSequence input) // creates a matcher that will match

// input against this pattern

Page 22 of 22 cont’d. . .

December 2013 Final Examination CSC207/B07F

class Matcher:

boolean find() // returns true iff there is another subsequence of the

// input sequence that matches the pattern.

String group() // returns the input subsequence matched by the previous match

String group(int group) // returns the input subsequence captured by the given group

//during the previous match operation

boolean matches() // attempts to match the entire region against the pattern.

class Observable:

void addObserver(Observer o) // adds o to the set of observers if it isn’t already there

void clearChanged() // indicates that this object has no longer changed

boolean hasChanged() // returns true iff this object has changed

void notifyObservers(Object arg) // if this object has changed, as indicated by

the hasChanged method, then notifies all of its observers by calling update(arg)

and then calls the clearChanged method to indicate that this object has no longer changed

void setChanged() // marks this object as having been changed

interface Observer:

void update(Observable o, Object arg) // called by Observable’s notifyObservers;

// o is the Observable and arg is any information that o wants to pass along

Regular expressions:

Here are some predefined character classes:

. Any character

\d A digit: [0-9]

\D A non-digit: [^0-9]

\s A whitespace character: [\t\n\x0B\f\r]

\S A non-whitespace character: [^\s]

\w A word character: [a-zA-Z_0-9]

\W A non-word character: [^\w]

\b A word boundary: any change from \w to \W or \W to \w

Here are some quantifiers:

Quantifier Meaning

X? X, once or not at all

X* X, zero or more times

X+ X, one or more times

X{n} X, exactly n times

X{n,} X, at least n times

X{n,m} X, at least n; not more than m times

Page 23 of 22 Student #: End of Final Examination

