Learning Objectives

By the end of this worksheet, you will:

- Prove and disprove statements using the definition of Big-Oh.
- Investigate properties of Big-Oh for some common families of functions.

Note: In Big-Oh expressions, it will be convenient to just write down the “body” of the functions rather than defining named functions all the time. We’ll always use the variable \(n \) to represent the function input, and so when we write “\(n \in \mathcal{O}(n^2) \),” we really mean “the functions defined as \(f(n) = n \) and \(g(n) = n^2 \) satisfy \(f \in \mathcal{O}(g) \).”

As a reminder, here is the formal definition of Big-Oh:

\[
g \in \mathcal{O}(f) : \exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq cf(n) \quad \text{where } f, g : \mathbb{N} \to \mathbb{R}_{\geq 0}
\]

1. Comparing polynomials. Our first step in comparing different families of functions is looking at different powers of \(n \). Consider the following statement, which generalizes the fact that \(n \in \mathcal{O}(n^2) \):

\[
\forall a, b \in \mathbb{R}^+, a \leq b \Rightarrow n^a \in \mathcal{O}(n^b)
\]

(a) Rewrite the above statement by expanding the definition of Big-Oh.

Solution

\[
\forall a, b \in \mathbb{R}^+, a \leq b \Rightarrow \left(\exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow n^a \leq cn^b \right)
\]

(b) Prove the above statement. **Hint:** you can actually pick \(c \) and \(n_0 \) to both be 1. Even though this is pretty simple, take the time to write the formal proof as a good warm-up for the rest of this worksheet.

Solution

Proof. Let \(a, b \in \mathbb{R}^+ \), and assume \(a \leq b \). Let \(c = 1 \) and \(n_0 = 1 \). Let \(n \in \mathbb{N} \), and assume that \(n \geq n_0 \). We want to prove that \(n^a \leq n^b \).

We can start with our assumption that \(a \leq b \) and calculate:

\[
a \leq b \\
n^a \leq n^b \quad \text{(since } n \geq 1) \\
n^a \leq cn^b \quad \text{(since } c = 1)
\]

Note: going from \(a \leq b \) to \(n^a \leq n^b \) involves raising \(n \) to the power of both sides. This is valid when \(n \geq 1 \).

2. Comparing logarithms. One slight oddity about the definition of Big-Oh is that it treats all logarithmic functions “the same”. Your task in this question is to investigate this by proving the following statement:

\[
\forall a, b \in \mathbb{R}^+, a > 1 \land b > 1 \Rightarrow \log_a n \in \mathcal{O}(\log_b n)
\]

We won’t ask you to expand the definition of Big-Oh, but if you aren’t quite sure, then we highly recommend doing so before attempting even your rough work.

Hint: use the “change of base rule” for logarithms.

1 If you are concerned by the fact that \(\log n \) is not defined at \(n = 0 \), you can replace \(\log_a n \) with \(\log_a (1 + n) \) in the above, and similarly with \(\log_b \). We usually don’t worry about this subtlety, since our concern is with the value of the functions for larger values of \(n \). Picking an \(n_0 > 0 \) avoids the evaluation worry.
Solution

Proof. Let \(a, b \in \mathbb{R}^+ \). Assume that \(a > 1 \) and \(b > 1 \). Let \(n_0 = 1 \), and let \(c = \frac{1}{\log_b a} \). Let \(n \in \mathbb{N} \), and assume that \(n \geq n_0 \). We want to show that \(\log_a n \leq c \cdot \log_b n \).

The \textit{logarithm change of base rule} tells us the following: \[\forall a, b, x \in \mathbb{R}^+, a \neq 1 \land b \neq 1 \Rightarrow \log_a x = \frac{\log_b x}{\log_b a} \]

Using this rule, we can write:

\[
\log_a n = \frac{\log_b n}{\log_b a} = \frac{1}{\log_b a} \log_b n = c \cdot \log_b n
\]

Since we’ve proved that \(\log_a n = c \cdot \log_b n \), we can conclude that \(\log_a n \leq c \cdot \log_b n \).

[Note: we didn’t need to use the assumption that \(n \geq 1 \) in this proof.]

\[\star \] Since \(a, b > 1 \), we know that \(c > 0 \).

\[\dagger \] When the bases are equal to 1, \(\log_a x \) is undefined when \(x \neq 1 \).
Now let’s look at one of the most important properties of Big-Oh: how it behaves when adding functions together. Let \(f, g : \mathbb{N} \rightarrow \mathbb{R}^{\geq 0} \). We define the sum of \(f \) and \(g \) as the function \(f + g : \mathbb{N} \rightarrow \mathbb{R}^{\geq 0} \) such that \(\forall n \in \mathbb{N}, (f + g)(n) = f(n) + g(n) \). For example, if \(f(n) = 2n \) and \(g(n) = n^2 + 3 \), then \((f + g)(n) = 2n + n^2 + 3 \).

Consider the following statement:

\[
\forall f, g : \mathbb{N} \rightarrow \mathbb{R}^{\geq 0}, \ g \in \mathcal{O}(f) \Rightarrow f + g \in \mathcal{O}(f)
\]

In other words, if \(g \) is Big-Oh of \(f \), then \(f + g \) is no bigger than just \(f \) itself, asymptotically speaking.

Your task for this question is to prove this statement. Keep in mind this is an implication: you’re going to assume that \(g \in \mathcal{O}(f) \), and you want to prove that \(f + g \in \mathcal{O}(f) \). It will likely be helpful to write out the full statement (with the definition of Big-Oh expanded), and use subscripts to help keep track of the variables.

Solution

Here’s the full statement, with the definitions expanded:

\[
\forall f, g : \mathbb{N} \rightarrow \mathbb{R}^{\geq 0}, \ (\exists c, n_0 \in \mathbb{R}^{+}, \ \forall n \in \mathbb{N}, \ n \geq n_0 \Rightarrow g(n) \leq cf(n)) \Rightarrow \\
(\exists c_1, n_1 \in \mathbb{R}^{+}, \ \forall n \in \mathbb{N}, \ n \geq n_1 \Rightarrow f(n) + g(n) \leq c_1f(n))
\]

Proof. Let \(f, g : \mathbb{N} \rightarrow \mathbb{R}^{\geq 0} \). Assume that \(g \in \mathcal{O}(f) \), i.e., there exist \(n_0, c \in \mathbb{R}^{+} \) such that for all natural numbers \(n \), if \(n \geq n_0 \) then \(g(n) \leq cf(n) \). We want to prove that \(f + g \in \mathcal{O}(f) \).

Let \(n_1 = n_0 \), and \(c_1 = c + 1 \). Let \(n \in \mathbb{N} \), and assume that \(n \geq n_1 \). We want to prove that \(f(n) + g(n) \leq c_1f(n) \).

Since \(n \geq n_1 = n_0 \), by our assumption we know that \(g(n) \leq cf(n) \). So then:

\[
\begin{align*}
g(n) &\leq cf(n) \\
f(n) + g(n) &\leq f(n) + cf(n) \\
f(n) + g(n) &\leq (c + 1)f(n) \\
f(n) + g(n) &\leq c_1f(n)
\end{align*}
\]