Learning Objectives

By the end of this worksheet, you will:

- Analyse the average-case running time of an algorithm.

1. **Average-case analysis.** Consider the following algorithm that we studied a few weeks ago. The input is an array A of length n, containing a list of n integers.

   ```python
   def has_even(A: List[int]) -> int:
       n = len(A)
       for i in range(n):
           if A[i] % 2 == 0:
               return i
       return -1
   ```

 We proved that the worst-case running time of this algorithm is $\Theta(n)$. In this problem we will analyse its average-case running time.

 For this analysis, we will consider the set of binary lists A of length n. That is, A is a list of n integers, where each integer is either 0 or 1.

 (a) For each $n \in \mathbb{Z}^+$, let I_n be the set of all binary lists of length n. Find an expression (in terms of n) for $|I_n|$, the size of I_n.

 Solution

 The number of binary lists of length n is 2^n, thus $|I_n| = 2^n$.

Page 1/3
(b) For each \(n \in \mathbb{Z}^+ \) and each \(i \in \{0, 1, \ldots, n - 1\} \), let \(S_n(i) \) denote the set of all binary lists \(A \) such that the first 0 occurs in position \(i \). More precisely, every list in \(S_n(i) \) satisfies the following two properties:

(i) \(A[i] = 0 \).
(ii) for all \(j \in \mathbb{N} \), if \(j < i \) then \(A[j] = 1 \).

Also let \(S_n(n) \) be the set of binary lists that contain no 0's. For each \(i, 0 \leq i \leq n \), find an expression for \(|S_n(i)| \).

Solution

For \(0 \leq i \leq n - 1 \), \(|S_n(i)| = 2^{n-1-i} \).

Also, \(|S_n(n)| = 1 \).

(c) Argue that for every \(n \in \mathbb{Z}^+ \), each binary list of length \(n \) is in exactly one set \(S_i \) (for some \(i \in \{0, \ldots, n\} \)).

Use this to show that \(\sum_{i=0}^{n} |S_n(i)| = |I_n| \).

Solution

For each input, either it contains a 0 or it doesn’t. If it doesn’t then it is (the single input) in \(S_n(n) \). If it does, then we partition these inputs according to the smallest location \(i \leq n - 1 \) where \(A[i] = 0 \): if an input has its first 0 in \(A[i] \), then it is in the set \(S_n(i) \). The sum is \(2^{n-1} + 2^{n-2} + \ldots + 1 + 1 = 2^n \).
(d) Let the runtime of the algorithm on a binary list A be the number of iterations of the loop. Give an exact expression for the average runtime of the above algorithm using the quantities that you calculated. You should get a summation; do not simplify the summation in this part.

Solution

Note that each input in $S_n(i)$ causes the loop to execute exactly $i+1$ times. So the overall average runtime is:

\[
\frac{1}{2^n} \sum_{i=0}^{n} |S_n(i)| \times (i+1) = \left(\frac{1}{2^n} \sum_{i=0}^{n-1} |S_n(i)| \times (i+1) \right) + \frac{|S_n(n)| \times (n+1)}{2^n}
\]

\[
= \left(\frac{1}{2^n} \sum_{i=0}^{n-1} 2^n-1-i \times (i+1) \right) + \frac{n+1}{2^n}
\]

\[
= \left(\frac{1}{2^n} \sum_{i'=1}^{n} 2^{n-i'} \times i' \right) + \frac{n+1}{2^n} \quad \text{(change of variable } i' = i+1) \]

\[
= \left(\sum_{i'=1}^{n} \left(\frac{1}{2} \right)^{i'} \times i' \right) + \frac{n+1}{2^n}
\]

(e) Show that the runtime that you calculated is in $O(1)$. You may use without proof that for all $x \in \mathbb{R}$, if $|x| < 1$, then $\sum_{i=1}^{\infty} ix^i = \frac{x}{(1-x)^2}$.

Solution

So we have $(n+1)/2^n + \sum_{i'=1}^{n} i'(1/2)^{i'}$. The first part is eventually less than 1, and by the formula given above, the second part is at most 2. Thus the expected runtime is $O(1)$.