- PS1 FAQ now available on course website
- Course notes available in bookstore

- This week: PROOFS!
 Proof = convincing argument

- In general
 English statement
 ↓
 Predicate statement
 ↓
 Rough work
 (“discussion" in the notes)
 ↓
 Proof header
 ↓
 Proof body: deductions with justifications

\[\forall x \in D, P(x) \]

Proof header
Let \(x \in D \)
(let \(x \) be an arbitrary but fixed element of \(D \))
$\exists x \in D, P(x)$

Let $x =$ (some specific value)

$P \Rightarrow Q$

Assume P

(try to prove Q)

Ex: Prove that every natural number n greater than 20 satisfies $1.5n - 4 \geq 3$.

1. \(\forall n \in \mathbb{N}, \ n > 20 \Rightarrow 1.5n - 4 \geq 3 \)

2. Proof headers:

 Let $n \in \mathbb{N}$, and assume $n > 20$.

PAUSE! Rough work...

\[1.5n - 4 \geq 3 \iff 1.5n \geq 7 \]

\[\iff n \geq \frac{7}{1.5} \]

3. Complete proof:
* Let \(n \in \mathbb{N} \), assume \(n > 20 \).

Then \(n \geq 5 \)

optional

So \(1.5n \geq 7.5 \)
(mult. both sides by 1.5)

Then \(1.5n - 4 \geq 3.5 \geq 3 \)

- justification is optional for simple arithmetic and algebraic manipulation

\[S_1: \forall n \in \mathbb{N}, \ n > 20 \ \Rightarrow \ 1.5n - 4 \geq 3 \]

\[S_2: \forall n \in \mathbb{N}, \ n > 20 \ \Rightarrow \ 1.5n - 4 \geq 3 \]

\[S_3: \forall n \in \mathbb{N}, \ n > 20 \ \Rightarrow \ 1.5n - 4 \geq 3 \]

syntax error: does not have a meaning

\(S_2 \) means "every natural number is >20 and satisfies \(1.5n - 4 \geq 3 \)"

Exercise: To prove \(S_2 \) is False, simply prove \(\neg S_2 \) is True.

\[S_4: \exists n \in \mathbb{N}, \ n > 20 \land 1.5n - 4 \geq 3 \]

\[S_5: \exists n \in \mathbb{N}, \ n > 20 \ \Rightarrow \ 1.5n - 4 \geq 3 \]

\(\times \)

does not have a natural English meaning
Proof example 2: Prove that for all integers \(x \), if \(x \mid x+5 \), then \(x \mid 5 \).

1. Translation:
 \[
 \forall x \in \mathbb{Z}, \ (x \mid x+5) \Rightarrow (x \mid 5)
 \]

 EXPAND
 DEFINITION

 \[
 \forall x \in \mathbb{Z}, \ (\exists k_1 \in \mathbb{Z}, x+5 = k_1 x) \\
 \Rightarrow (\exists k_2 \in \mathbb{Z}, \ 5 = k_2 x)
 \]

2. Proof headers
 Let \(x \in \mathbb{Z} \). Assume \(\exists k_1 \in \mathbb{Z}, x+5 = k_1 x \).

 convention: "assume \(\exists \)" introduces a new variable (\(k_1 \)). At this point, we can use
 - \(x \in \mathbb{Z} \)
 - \(k_1 \in \mathbb{Z}, \ x+5 = k_1 x \)

 We want to prove \(\exists k_2 \in \mathbb{Z}, \ 5 = k_2 x \).

 Let \(k_2 = \frac{k_1 - 1}{x} \)

 We want to show \(5 = k_2 x \).

Time to think! (Rough work)
NOT PART OF PROOF
Consider \(5 = k_2 x \) \(\Rightarrow \) \(k_2 = \frac{5}{x} \)

PROBLEM: \(\frac{5}{x} \) may not be an integer!
Instead, consider \(x+5 = k_1x \)

pick \(k_2 = k_1 - 1 \) \(\leq \)
\[
5 = k_1x - x \\
5 = (k_1 - 1)x
\]

(back to proof)

Then,
(by assumption) \(x + 5 = k_1x \)
\[
5 = k_1x - x \\
5 = (k_1 - 1)x
\]
(by def.) \(5 = k_2x \)

Q.E.D.

Then,
\[
5 = k_2x \\
5 = (k_1 - 1)x
\]
\[
5 = k_1x - x \\
x + 5 = k_1x
\]

BACKWARDS

Note: in general, justifying why \(k_2 \in \mathbb{Z} \) is important — here, okay to leave out because it is so simple.

Generalization:

For all integers \(d, x \),
if \(x | (x+d) \), then \(x | d \) ?

Proof generalization:

* substitute \(d \) for \(5 \) in previous proof;
 does it still work?

Further: \(x | ax + d \Rightarrow x | d \) ?