Intuition: how few edges can remain in a connected graph?

- cycles
- trees

Tree = connected but acyclic (no cycle)

A- For any graph $G = (V,E)$ that is connected,

 (*) G is acyclic \Rightarrow removing any edge from G disconnects it

Proof: Let $G = (V,E)$ and assume G is connected.

 We prove (*) by contrapositive.

 Assume G contains some edge (u,v) whose removal does not disconnect G.

 So G contains a path from u to v that does not include edge (u,v) — adding (u,v) to this path creates a cycle in G.

Consequence: every connected graph on n vertices contains at least as many edges as a tree on n vertices.
B - Prove that for all trees, $|E| = |V| - 1$.

Proof by induction:

\[\forall n \in \mathbb{Z}^+, \forall G = (V, E), |V| = n \land G \text{ is a tree} \Rightarrow |E| = n - 1 \]

- **Base Case:** EXERCISE

- **Ind. Hyp.:** Let $k \in \mathbb{Z}^+$ and assume
 \[\forall G = (V, E), |V| = k \land G \text{ is a tree} \Rightarrow |E| = k - 1 \]

- **Ind. Step:** WTS $\forall G = (V, E), |V| = k+1 \land G \text{ is a tree} \Rightarrow |E| = k$

Let $G = (V, E)$ and assume $|V| = k+1$ and G is a tree.

ROUGH WORK

Just remove some arbitrary $N \in V$

\[G:\]

\[G-\text{N}: \]

Need to ensure we remove N s.t. $G-\text{N}$ is still connected.

Idea: find N of degree 1 → number of neighbours

- **Assumption (to be proved later):** G must contain at least one vertex N_0 with degree 1.

Then, $G' = (V', E')$ with

\[V' = V - \{N_0\} \]

\[E' = E - \{(N_0, N)\} \]

(where N_0 is the one neighbour of N_0 in G)

satisfies $|V'| = k$, G' is a tree (still connected)

By I.H., $|E'| = k - 1$, so $|E| = |E'| + 1 = k$. □
Proof of "assumption":

Every tree with $n \geq 2$ vertices contains at least one "leaf" (vertex of degree 1).

Proof: Let $u \in V$. In the tree, find a longest path starting at u, and let v be the end vertex on that path. Then v is a leaf — otherwise, either G would contain a cycle (contradicts G is a tree) or there would be a longer path from u.

[Diagram of a tree with a path and a leaf marked]