1. [5 marks] Propositional logic.

(a) [3 marks] Write the truth table for the following formula. No rough work is required.

\[\neg p \Rightarrow (q \land r) \]

Solution

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>r</th>
<th>(q \land r)</th>
<th>(\neg p \Rightarrow (q \land r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

(b) [2 marks] Write a formula that is logically equivalent to the formula from Part (a) that only uses the operators: \(\neg, \land, \lor \). Show your work. You do not need to give the names of any equivalence rules.

Reminder: Review and follow the guidelines stated on Page 1 of this test.

Solution

\[\neg p \Rightarrow (q \land r) \]

\[\iff \neg p \lor (q \land r) \]

\[\iff p \lor (q \land r) \]
2. [5 marks] **Statements in logic.**

A natural number whose square can be written in the form \(p^2 + q^2 \) for some positive integers \(p \) and \(q \) is called a *Pythagorean number*. For example, the natural number 5 is a Pythagorean number since \(25 = 9 + 16 \) tells us that \(5^2 = 3^2 + 4^2 \).

(a) [2 marks] Define a predicate \(\text{Pythagorean}(n) \), where \(n \) has domain \(\mathbb{N} \) (the set of natural numbers), that expresses the English statement:

"\(n \) is a Pythagorean number".

Use the notation of predicate logic in your solution, not English words.

Solution

\[
\text{Pythagorean}(n) : \ \exists \ p, q \in \mathbb{Z}, \ p > 0 \land q > 0 \land n^2 = p^2 + q^2, \quad \text{where} \ n \in \mathbb{N}.
\]

(b) [3 marks] Express using the language of predicate logic the English statement:

"There are infinitely many Pythagorean numbers."

You may use the predicates <, \(\leq \), = and \(\text{Pythagorean} \), but may not use any other predicate or function symbols.

Reminder: Review and follow the guidelines stated on Page 1 of this test.

Solution

\[
\forall \ x \in \mathbb{N}, \exists \ y \in \mathbb{N}, \ x < y \land \text{Pythagorean}(y)
\]

Can also say: \(\forall \ x \in \mathbb{N}, \exists \ y \in \mathbb{N}, \ x \leq y \land \text{Pythagorean}(y) \)

Or: \(\forall \ x \in \mathbb{N}, \text{Pythagorean}(x) \Rightarrow (\exists \ y \in \mathbb{N}, x < y \land \text{Pythagorean}(y)) \)

Or: \(\forall \ x \in \mathbb{N}, \exists \ y \in \mathbb{N}, \text{Pythagorean}(x) \Rightarrow (x < y \land \text{Pythagorean}(y)) \)
3. [5 marks] Proofs (inequalities). Consider the following statement: “There exists a natural number n_0 such that for every natural number n greater than n_0, $8n^2 \leq n^3 - 20n$.”

(a) [1 mark] Translate the above statement into predicate logic. (Do not define your own set.)

Solution

$$\exists n_0 \in \mathbb{N}, \forall n \in \mathbb{N}, n > n_0 \Rightarrow 8n^2 \leq n^3 - 20n$$

(b) [4 marks] Prove the statement. In your proof, any chains of calculations must follow a top-down order; don’t start with the inequality you’re trying to prove!

Write any rough work or intuition in the Discussion box, and write your formal proof in the Proof box. Your rough work/intuition will only be graded if your proof is not completely correct.

HINT: Don’t spend time trying to find the smallest possible value for n_0. Pick a large number.

Solution

Proof. Let $n_0 = 100$. Also let n be an arbitrary natural number that is greater than n_0. We need to show that $8n^2 \leq n^3 - 20n$, or equivalently, $n^3 - 20n \geq 8n^2$.

Since $n > n_0$ and $n_0 = 100$, $n^3 = n \cdot n^2 \geq 100n^2$. Then

$$n^3 - 20n \geq 100n^2 - 20n$$
$$\geq 100n^2 - 20n^2$$
$$= 80n^2$$
$$\geq 8n^2.$$

(There are many other valid sequences of steps.)
4. [5 marks] Proofs and disproofs.

Let \(x, y, m \in \mathbb{N} \). We say that \(m \) is a **common multiple** of \(x \) and \(y \) if and only if \(x \) divides \(m \) and \(y \) divides \(m \). We can define the predicate \(\text{IsCM}(x, y, m) \): \(\text{“} x \mid m \land y \mid m, \text{”} \) where \(x, y, m \in \mathbb{N} \).

We say that \(z \) is the **least common multiple** of \(x \) and \(y \) if and only if it is the smallest common multiple of \(x \) and \(y \), and in this case write \(z = \text{lcm}(x, y) \). For example, the least common multiple of 4 and 6 is 12. We can write \(12 = \text{lcm}(4, 6) \).

(a) **[2 marks]** Use the language of predicate logic to fill in the blank below and complete the definition of the \(\text{lcm}(x, y) \) function. You may use the \(\text{IsCM}(x, y, m) \) predicate that was defined above.

\[
\forall x, y, z \in \mathbb{N}, \left(z = \text{lcm}(x, y) \Leftrightarrow (\text{IsCM}(x, y, z) \land \text{__________________}) \right)
\]

Solution

\[
\forall x, y, z \in \mathbb{N}, \left(z = \text{lcm}(x, y) \Leftrightarrow (\text{IsCM}(x, y, z) \land \forall w \in \mathbb{N}, \text{IsCM}(x, y, w) \Rightarrow z \leq w) \right)
\]

(b) **[3 marks]** Prove or disprove the following statement: \(\forall x, y, z \in \mathbb{N}, \ z = \text{lcm}(x, y) \Rightarrow z + 1 = \text{lcm}(x, y + 1) \).
If you choose to disprove the statement, you must start by writing its negation.

Solution

This statement is not True. Its negation is:

\[
\neg \left(\forall x, y, z \in \mathbb{N}, \ z = \text{lcm}(x, y) \Rightarrow z + 1 = \text{lcm}(x, y + 1) \right)
\]

\[
\iff \left(\exists x, y, z \in \mathbb{N}, \left(z = \text{lcm}(x, y) \right) \land \left(z + 1 \neq \text{lcm}(x, y + 1) \right) \right)
\]

Proof. Let \(x = 2, y = 3 \) and \(z = 6 \). We note that \(z = \text{lcm}(x, y) \). Also note that \(z + 1 = 7 \) and \(\text{lcm}(2, 4) = 4 \), and so \(\text{lcm}(x, y + 1) = 4 \). Since \(7 \neq 4 \), we have \(z + 1 \neq \text{lcm}(x, y + 1) \).

(There are many other valid choices for \(x \) and \(y \).) \(\square \)