Learning Objectives

By the end of this worksheet, you will:

- Have been introduced to bipartite graphs.

1. Bipartite graphs. A bipartite graph is a graph $G = (V, E)$ that satisfies the following properties:

 (a) There exist subsets $V_1, V_2 \subset V$ such that $V_1 \neq \emptyset$, $V_2 \neq \emptyset$, and V_1 and V_2 form a partition of V.

 (b) Every edge in E has exactly one endpoint in V_1, and exactly one endpoint in V_2. (That is, no two vertices in V_1 are adjacent, and no two vertices in V_2 are adjacent.)

When G is bipartite, we call the partitions V_1 and V_2 a bipartition of G.

(a) Prove that the following graph $G = (V, E)$ is bipartite.

 $$V = \{1, 2, 3, 4, 5, 6\} \quad \text{and} \quad E = \{(1, 2), (1, 6), (2, 3), (3, 4), (4, 5), (5, 6)\}$$

Solution

Let $V_1 = \{1, 3, 5\}$ and $V_2 = \{2, 4, 6\}$. Then V_1 and V_2 together provide a partition of V, as $V = V_1 \cup V_2$, $V_1 \cap V_2 = \emptyset$ and neither V_1 nor V_2 is empty.

Note that all of the vertex labels in V_1 are odd numbers and all of the vertex labels in V_2 are even numbers.

Each of the edges $(1, 2)$, $(1, 6)$, $(2, 3)$, $(3, 4)$, $(4, 5)$, and $(5, 6)$, has one endpoint that with a vertex label that is an odd number and one that is an even number.

(b) Let m and n be positive integers. A complete bipartite graph on (m, n) vertices is a graph $G = (V, E)$ that satisfies the following properties:

 i. There exist subsets $V_1, V_2 \subset V$ such that $V_1 \neq \emptyset$, $V_2 \neq \emptyset$, and V_1 and V_2 form a partition of V.

 ii. Every edge in E has exactly one endpoint in V_1, and exactly one endpoint in V_2. (That is, no two vertices in V_1 are adjacent, and no two vertices in V_2 are adjacent.)

 iii. (new) $|V_1| = m$ and $|V_2| = n$.

 iv. (new) For all vertices $u \in V_1$ and $w \in V_2$, u and w are adjacent.

How many edges are in a complete bipartite graph on (m, n) vertices? Your answer will depend on m and n. Explain your answer.

Solution

Let $G = (V, E)$ be a complete bipartite graph on (m, n) vertices, with bipartition V_1, V_2, and $|V_1| = m$ and $|V_2| = n$.

Then each vertex $u \in V_1$ appears as an endpoint in n edges in E, since it has an edge to each of the n vertices in V_2. As there are m vertices in V_1 and the previous statement is true for each of them, we know that there are at least mn edges in E.

But, since there are no edges between vertices in V_1 and no edges between vertices in V_2, there are no other edges to count.

And so we can conclude that the number of edges in a complete bipartite graph on (m, n) vertices is mn.

1That is, $V_1 \cup V_2 = V$ and $V_1 \cap V_2 = \emptyset$.