Consider: \[p \lor q \Rightarrow r \]

Interpret as: \[(p \lor q) \Rightarrow r \]

or \[p \lor (q \Rightarrow r) \]

Related: \[a + b \times c \]

as \[(a + b) \times c \] or \[a + (b \times c) \]

precedence rule for arithmetic: \(\times \) before \(+\)

Precedence rules for logical operators:

- highest (apply first) \(\Rightarrow \)
- then \(\land, \lor \) (left to right)
- then \(\Rightarrow, \Leftrightarrow \)
- then \(\land, \lor \)

So interpret \(\circ \) as \((p \lor q) \Rightarrow r \).

When in doubt, use \((\) \)

Ch 2 An Introduction to Proofs
defn: A proof is an argument that shows that a statement is True.

A disproof is False.

good proof: are concise
 complete (no details left out)
 presented in a connected order.

Proof Recipe/Procedure:

1. Identify: Prove or disprove?

2. Translate the statement to predicate logic

 Doing so: may help see how to prove it
 any possible
 forces you to resolve ambiguity in statement.

3. Informally write down your observations.
 express intuition about problem.

4. Write a formal proof that properly express your argument
Consider "Some power of two is greater than 1000."

1. **Suspect** True since powers of two grow to ∞ (\therefore greater than 1000)

2. *What is the variable?*
 - The powers of two - call it n
 - All powers of two have form 2^n
 - Some \rightarrow existential

$$\exists n \in \mathbb{Z}, \quad 2^n > 1000.$$

or

$$\exists n \in \mathbb{Z}, \quad P(n)$$

$P(n)$: "$2^n > 1000$", where $n \in \mathbb{Z}$.

Statement type: An existentially quantified simple predicate.

3. Know $2^n > 1$

<table>
<thead>
<tr>
<th>n</th>
<th>2^n</th>
<th>$2^n > 1000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>256</td>
<td>F</td>
</tr>
<tr>
<td>9</td>
<td>512</td>
<td>F</td>
</tr>
<tr>
<td>10</td>
<td>1024</td>
<td>T</td>
</tr>
</tbody>
</table>

Since $n < 1$ give $2^n < 1$.
Proof.

Let $n = 10$.

Then 2^n is a power of two.

and $2^n = 2^{10}$

$= 1024$

> 1000.

Hence $\exists n \in \mathbb{Z}$ such that $2^n > 1000$.

\square

Summary: Fundamental Structure of an Existence Proof

Given statement to prove: $\exists x \in \mathbb{D}, P(x)$

Proof looks like:

- **header**

 [] Let $x = __$

- **body**

 [] Prove that $P(_)$ is True.

Note: the $__$ can be a concrete value or an expression that evaluates to a concrete value. You get to choose the value.
example: "Every real number n bigger than 20 satisfies the inequality $1.5n - 4 \geq 3."$

1. Suspect True since LHS represents a line with positive slope and RHS is constant.

 Also $n = 40$ \[1.5(40) - 4 = 56\] \[\geq 3\]

2. Variable n

 Domain: could choose $\mathbb{R}^{>20}$

 but choose \mathbb{R} and write logic quantifier: \forall

 To impose condition $n > 20$

 $\forall n \in \mathbb{R}$, $n > 20 \Rightarrow 1.5n - 4 \geq 3$

3. Assume $n > 20$

 \therefore

 $1.5n > 30$

 $1.5n - 4 \geq 3$

 $1.5n - 4 > 26$

 ≥ 3

 Write it up.

4. Proof.

 Let n be an arbitrary real number and assume $n > 20$.
Since \(n > 20 \)
1.5\(n \) > 30
1.5\(n \) - 4 > 26
1.5\(n \) - 4 > 3

Hence \(\forall n \in \mathbb{R}, \ n > 20 \Rightarrow 1.5n - 4 > 3 \). \(\square \)

Summary. Fundamental Structure of a Universal Proof

Given statement: \(\forall x \in D, R(x) \)

Proof looks like:

Let \(x \) be an arbitrary element of \(D \).

Proof that \(R(x) \) is True. \(\square \)

Restriction on domain

\(\forall x \in D, \ P(x) \Rightarrow Q(x) \)

Proof looks like:

Let \(x \) be an arbitrary element of \(D \) and assume \(P(x) \).

Proof that \(Q(x) \) is True \(\square \)

\[P(x) \Rightarrow Q(x) \]

is True when \(P(x) \) is False
∀x∈D, P(x) = Q(x) \\
⇒ vac. true for x∈D \\
s.t. P(x) false \\

hard part: show ⇒ True \\
for x∈D s.t. P(x) True