$G = (V, E)$

Write a description for graph G:

$$V = \{A, B, C, D, E\}$$

$$E = \\{ (A, B), (A, C), (C, D), (A, D) \}$$

- The number of vertices in G
 $$|V| = 5$$
- The number of edges in G
 $$|E| = 4$$

Can prove Thm about graphs.
e.g. Let $G = (V, E)$ be an arbitrary graph. Then $|E| \leq \frac{|V|(|V|-1)}{2}$

Proof. $orall G = (V, E) \in G$, $|E| \leq \frac{|V|(|V|-1)}{2}$

$G = \text{the set of all possible graphs}$

Let $G = (V, E)$ be an arbitrary graph.

Each edge in G consists of pairs of distinct vertices from V, where order does not matter. The maximum number of edges is the same as the number of subsets of V of size 2, which is $\frac{|V|(|V|-1)}{2}$. And so

$|E| \leq \frac{|V|(|V|-1)}{2}$.

Beware of double counting $(v_i, v_j) = (v_j, v_i)$

Other concepts:
- Can we get to vertex v_j?
How many vertices do we go through in trip from \(v_i \) to \(v_j \)?

(Could be multiple routes)

- Can we get from \(v_i \) to \(v_j \) with one edge?
- Can we get to all vertices \(v_j \) starting from \(v_i \)?

Terminology

Let \(G = (V, E) \).

Def.

Let \(v_1, v_2 \in V \). We say that \(v_1 \) and \(v_2 \) are adjacent if and only if

\[(v_1, v_2) \in E.\]

(also say \(v_1, v_2 \) are neighbours)

Def. Let \(u, u' \in V \)

A path between \(u \) and \(u' \) is a sequence of distinct vertices

\[v_0, v_1, v_2, \ldots, v_k \in V\]

that satisfy the properties

\[v_0 = u \quad \text{and} \quad v_k = u' \quad (\text{end points of path})\]

- each consecutive pair of vertices are
adjacent

\((u_i, u_{i+1}) \in E\)

for \(i = 0, 1, 2, ..., k-1\).

u

\[\begin{array}{c}
 u_0 \quad u_1 \quad u_2 \quad u_3 \quad u_4 \quad u_k \quad u_{k-1} \\
\end{array} \]

"distinct" says

u

\[\begin{array}{c}
 u_0 \quad u_1 \quad u_2 \quad u_3 \quad u_4 \quad u_k \quad u_{k-1} \\
\end{array} \]

- valid path

- not a valid path

- the length of a path: the \# of edges
 used by the sequence

- can a path have length 0?
 yes. allow \(u = u' \)

- there can be more than one path
 between \(u \) and \(u' \)

- there can be paths of different
 lengths from \(u \) to \(u' \)

- possible that there is no path
 from \(u \) to \(u' \)

- the distance from \(u \) to \(u' \)
 is the length of the shortest
path from \(u \) to \(u' \)

- if no path, distance is \(\infty \)

We say that vertices \(u \) and \(u' \) are connected if and only if \(\exists \) a path from \(u \) to \(u' \).

The graph \(G = (V, E) \) is connected if and only if for all pairs of vertices \(u, v \in V \), \(u \) and \(v \) are connected.

Predicate:

\[\text{conn} \left(G = (V, E), u, v \right) : \]

" \(u \) and \(v \) are connected vertices in \(G \)". Where \(G = (V, E) \), \(u, v \in V \).

Facts:

1. \[\text{conn}(G, u, v) \Rightarrow \text{conn}(G, u, u) \]

Prove \(\exists \) path from \(u \) to \(u \)

Path is: \(u, v, u, v, \ldots, u, v, u, v \)

Prove \(\exists \) path from \(u \) to \(u \)
Transitivity

\[\text{conn}(G, u, v) \land \text{conn}(G, v, w) \Rightarrow \text{conn}(G, u, w) \]

Proof.

Assume there is a path

\[a_0, a_1, a_2, \ldots, a_m, a_m, a_n, \ldots, a_n, u, v, w \]

\[b_0, b_1, b_2, \ldots, b_{n-1}, b_n, \ldots, b_n, u, \ldots, a_n, v, w \]

Want to prove there is a path in G from u to w.

Case: a's and b's are distinct.

Then path is

\[a_0, a_1, a_2, \ldots, a_m, b_1, b_2, \ldots, b_n \]

Case: a's and b's are not distinct:

\[a_0, a_i = b_k, \ldots, a_n, a_i = b_k, \ldots, b_n, \ldots, a_n, v, w \]

Pick smallest i such that \(a_i = b_k \)
The next questions:

- is there a \(M_1 \) s.t. if \(|E| > M_1 \),

 \(G \) must be connected?

- is there a \(M_2 \) s.t. \(|E| < M_2 \),

 \(G \) must not be connected?

\[G \text{ is not connected} \quad \text{if } |E| < M_2 \]
\[G \text{ may or may not be connected} \quad \text{if } |E| = M_2 \]
\[G \text{ is connected} \quad \text{if } |E| > M_2 \]

- it turns out that

\[M_1 = \frac{(1v-1)(1v-2)}{2} \]

[see course notes]

\[M_2 = ? \]

next time!