Describe the growth of function runtimes.

Have seen 3 situations

1. Code where all loops run to completion.
 - Plot might look like:
 \[\text{RT}_f(n) \]
 - In this case, easy to determine a \(\Theta \) bound.
 \(e.g. \text{RT}_f(n) \in \Theta(n^2) \)

2. Code where loops sometimes finish early.
 - Only one runtime for each \(n \).
 - In this case, want to determine \(h_1(n), h_2(n) \)
 \(s.t. \text{RT}_f(n) \in O(h_1(n)) \land \text{RT}_f(n) \in \Omega(h_2(n)) \)
 - When \(h_2 \in \Theta(h_1) \), conclude \(\text{RT}_f(n) \in \Theta(h_1(n)) \)

3. Code where loops depend on \(n \)
In this case, want to describe the extreme values in each slice:

max \rightarrow WC_f(n) \quad Worst\ Case

min \rightarrow BC_f(n) \quad Best\ Case

\[WC_f(n) = \max \{ \text{runtime of } f(x) | \text{input } x \text{ has size } n \} \]

\[BC_f(n) = \min \{ \text{runtime of } f(x) | \text{input } x \text{ has size } n \} \]
Similarly for $BC_f(n)$ we want h, h' s.t.

$$BC_f(n) \in O(h(n)) \land BC_f(n) \in \Omega(h'(n))$$

Because $h(n) \in \Theta(h'(n))$ so then

$$BC_f(n) \in \Theta(h(n))$$

Unpacking the def:

$$WC_f(n) \in O(g(n))$$

$$\iff \exists c_0, n_0 \in \mathbb{R}^+, \forall n > n_0 \Rightarrow WC_f(n) \leq c_0 g(n)$$

$$\max \{ \text{runtime of } f(x) | x \text{ has size } n \} \leq c_0 g(n)$$

If $\max \text{ runtime } \leq c_0 g(n)$ then all runtimes $\leq c_0 g(n)$ for fixed n

\forall inputs x of size n, runtime of $f(x) \leq c_0 g(n)$
Back to has_even function:

def has_even(x):
 for i in x:
 if i % 2 == 0:
 return True
 return False

- the # of loop iterations is at most n
- 1 basic operation for 'return False'

: runtime of has_even(x) is at most $n+1$

basic operations.

- to prove band:

 for $n \geq 1$,

 \[
 \forall \text{ inputs } x \text{ of size } n, \text{ runtime } \text{ of } \text{has-even}(x) \leq 2 \cdot n
 \]

 \[
 \therefore \text{ WC}_{\text{has-even}}(n) \in O(n)
 \]

 unpack the \text{ def}\n
 \[
 \text{WC}_{f}(n) \in \Omega(h(n))
 \Rightarrow \exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n > n_0, \Rightarrow c, h(n) \leq \text{WC}_{f}(n)
 \]
\[
\max_{x \text{ has size } n} \{ \text{runtime of } f(x) \} \leq c \cdot h(n)
\]

- not all runtimes \(f(x) \) need to be \(\geq c \cdot h(n) \).
- but if \(\max \{ \} \geq c \cdot h(n) \), then runtime \(f(x) \geq c \cdot h(n) \) for some \(x \) of size \(n \).

\[
\text{input } x \text{ of size } n, \quad c \cdot h(n) \leq \text{runtime of } f(x)
\]

\[
\text{need to be able to determine an input for each size } n \text{ that has runtime } \geq c \cdot h(n)
\]

- back to has. even
 - our desire is to show \(WC(n) \in \mathcal{O}(n) \) has even
 - to match \(\mathcal{O}(n) \)
 - how to force has. even to take at least \(n \) basic op?
 - make a list that only contains odds

- \(\forall n \in \mathbb{N}, \ n \geq 1 \), define \(x_n \) with \(n \) items

\[
x_n = [1, 1, 1, \ldots, 1]
\]
called an input family

- runtime of \text{has-eve}_n (X_n) is at least \(n \) basic operations

Hence for \(n \geq n \),

If an input \(x \) of size \(n \), \(1 \leq n \leq \text{runtime of } \text{has-eve}_n(x) \)

\[\therefore \text{WC}_{\text{has-eve}}(n) \in \Omega(n) \]

\[\therefore \text{WC}_{\text{has-eve}}(n) \in \Theta(n) \]

\[\max \{ \} \leq c \cdot g(n) \]
\[\rightarrow \text{A value in set, value } \leq c \cdot g(n) \]

\[c \cdot h(n) \leq \max \{ \} \]
\[\rightarrow \text{A value in set, } c \cdot h(n) \leq \text{value} \]

\[\text{could consider BC but will instead do?} \]
A more complex example: palindrome prefix

defn: A string s is a palindrome iff it reads the same forwards as backwards.

$$s[i] = s[-1-i], \text{ } i \in \text{range}(\text{len}(s))$$

e.g. "racecar", "bob", "x"

defn: A string s_1 is a prefix of string s_2 iff $s_1[i] = s_2[i], \text{ } i \in \text{range}(\text{len}(s_1))$

problem: Given a nonempty string s, return the length of the longest prefix of s that is a palindrome.

e.g. "attack"

<table>
<thead>
<tr>
<th>prefixes</th>
<th>palindrome?</th>
<th>length</th>
</tr>
</thead>
<tbody>
<tr>
<td>'a'</td>
<td>T</td>
<td>1</td>
</tr>
<tr>
<td>'at'</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>'att'</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>'atta'</td>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>'attack'</td>
<td>F</td>
<td></td>
</tr>
</tbody>
</table>
def palindrome_prefix(s: str) -> int:
 """Return the length of the longest prefix of a nonempty string s
that is a palindrome.
 >>> palindrome_prefix('attack')
 4
 """

 n = len(s)
 for prefix_length in range(n, 0, -1): # goes from n down to 1
 # Check whether s[0:prefix_length] is a palindrome
 is_palindrome = True # assume it is until know otherwise
 i = 0
 while is_palindrome and i < prefix_length:
 if s[i] != s[prefix_length - 1 - i]:
 is_palindrome = False
 i = i + 1

 # if current prefix is a palindrome, return its length
 if is_palindrome:
 return prefix_length

Problem: describe WC \(n \)

\[\text{prefix length} = n \quad n-1 \quad n-2 \]
\[= \frac{n(n+1)}{2} \]
\[\therefore \text{WC} (n) \in \Theta(n^2) \]
\[\text{P-P} \]

[argument assumes each loop goes through all possible values]

\[\text{WC} (n) \in \Theta(n^2) \]
\[\text{desire } n^2 \text{ if possible.} \]
try a few examples

\[s = 'aaaa \ldots a' \quad \text{return} \quad n \]

- inner loop runs \(n \) times
- outer loop runs once

\[\text{runtime} \sim n \]

\[s = 'abbbb \ldots b' \quad \text{return} \quad 1 \]

- inner loop runs once each time
- outer loop runs \(n \) times

\[\text{runtime} \sim n \]

- runtime \(\sim n^2 \)
 - outer loop runs \(a \) times \(\sim n \)
 - inner loop runs \(a \) times \(\sim n \) each time