Consider: \(p \lor q \Rightarrow r \)

interpreted as: \((p \lor q) \Rightarrow r \)
\[p \lor (q \Rightarrow r) \] ?

\[a + b \times c \]
precedence: \(* \) before \(+ \)

Logic precedence rules:

- highest (do first) \(\neg \)
- then \(\land, \lor \) (left to right)
- then \(\Rightarrow, \equiv \)
- then \(\forall, \exists \)

1. interpreted as: \((p \lor q) \Rightarrow r \)

Ch 2 An Introduction to Proofs.

Def. A **proof** is an argument that shows that a statement is True.
A disproof is False.

Proof Recipe: process to follow.

1. Identify: proof or disproof.

2. Translate statement to predicate logic
 . form of statement guides proof approach
 . address any ambiguity.

3. Informally write down observations or intuition.

4. Write a formal proof that completely and concisely expresses your argument.

Consider: "Some power of two is greater than 1000."

1. Try to prove it since powers of 2 grow to infinity.

2. Variable: the power of 2 - call it n
 . n ∈ \(\mathbb{Z}\).
 . \(n \geq 2^n\)
 . all n? no, just some

\[\exists n \in \mathbb{Z}, \quad 2^n > 1000\]
or \(\exists n \in \mathbb{Z}, \ P(n) \)

where \(P(n): \ 2^n > 1000 \), where \(n \in \mathbb{Z} \).

\textbf{type:} An existentially quantified simple predicate

\(\exists \text{ know } \ n \geq 0 \text{ so } 2^n \geq 1 \)

\textbf{try a few values:} \(n = 8 \quad 2^8 = 256 \)
\(9 \quad 2^9 = 512 \)
\(10 \quad 2^{10} = 1024 \)

\(\textbf{Proof.} \)

Let \(n = 10 \).

Then \(2^n \) is a power of 2 and
\[2^n = 2^{10} = 1024 > 1000. \]

Hence, \(\exists n \in \mathbb{Z}, 2^n > 1000. \)

\(\square \)

\textbf{Fundamental Structure of an Existential Proof.}

\textbf{Given statement:} \(\exists x \in D, P(x) \).

\textbf{Proof looks like:}
Let \(x = _ \) (a concrete value)

Prove that \(P(_) \) is True.

Note: you get to choose what goes in \(_ \).

Consider "Every real number \(n \) bigger than 20 satisfies the inequality \(1.5n - 4 \geq 3 \)."

1. Do you think True?
 - Yes: LHS: \(e \) graph of line, \(\Theta \) slope so goes to \(+\infty \)
 - RHS is constant

 \(n = 20 \), \(26 \geq 3 \) \(\checkmark \)

2. Translate: variable \(n \) domain \(\mathbb{R} \) or \(\mathbb{R}^{>20} \)

 Use the largest domain and logic to restrict.

 \(\forall n \in \mathbb{R}, \ n^{>20} \Rightarrow 1.5n - 4 \geq 3 \).

3. Since \(n \) appears on both sides of
 write what we assume true

 \(n^{>20} \)
and try to show conclusion \(1.5n - 4 \geq 3\) is\(\text{True}\).

\[
\begin{align*}
\text{header} & \quad \text{variables} & \quad \text{assumptions} \\
\text{body} & \quad \text{argument} & \quad \text{leading} & \quad \text{to conclusion} \\
\end{align*}
\]

\[
\begin{align*}
n & > 20 \\
1.5n & > 30 \\
1.5n - 4 & > 26 \\
1.5n - 4 & > 3
\end{align*}
\]

Simple predicate \(R(n)\)

Fundamental Structure of a Universal Proof:

Given statement: \(\forall n \in D, R(n)\)
Proof look like:

Let n be an arbitrary element of D.

Proof that $R(n)$ is True.

\[
\forall n \in D, \quad P(n) \Rightarrow Q(n)
\]

if restriction on domain:

\[
\text{True for } n \text{ for which } \neg P(n)
\]

structure becomes:

Let n be an arbitrary element of D and assume $P(n)$.

Prove that $Q(n)$ is True.

\[
\text{e.g. } n = 4, \quad 1.5n - 4 > 3 \text{ is False \quad but} \quad n > 20 \Rightarrow 1.5n - 4 \geq 3 \text{ is True}
\]