Team Test 2 on Thu

see website 'Test Info' page
for room + coverage details

Last time: palindrome: racecar, hannah,
ai bohphobia (fear of palindromes!)

String prefix: 'sum' 'summation'
'mis' 'mispelt'

Problem: Given a nonempty string S, return the length of the longest prefix that is a palindrome.

Here is an algorithm that solves the problem
def palindrome_prefix(s: str) -> int:
 """Return the length of the longest prefix of a nonempty string s
 that is a palindrome.
 """

 >>> palindrome_prefix('attack')
 4

 n = len(s)
 for prefix_length in range(n, 0, -1): # goes from n down to 1

 # Check whether $s[0:prefix_length]$ is a palindrome
 is_palindrome = True # assume it is until know otherwise
 i = 0
 while is_palindrome and i < prefix_length:
 if s[i] != s[prefix_length - 1 - i]:
 is_palindrome = False
 i = i + 1

 # if current prefix is a palindrome, return its length
 if is_palindrome:
 return prefix_length

Now: describe $WC_{pp}(n)$

$\max \{ \text{runtime of } pp \text{ on } s \mid \text{len}(s) = n \}$.
Our runtime plot might look like:
$\text{WC}_{\text{pp}}(n) \in O(g(n))$ means

$\exists c_0, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, \ n \geq n_0 \implies$ all below $g(n)$

\forall inputs s with $\text{len}(s) = n$,

runtime $\text{pp}(s) \leq c_0 \cdot g(n)$

$\text{WC}_{\text{pp}}(n) \in \Omega(g'(n))$ means

$\exists c, n \in \mathbb{R}^+, \forall \text{len}(s) = n$,

$c \cdot g'(n) \leq \text{runtime}_{\text{pp}}(s)$.

A lower bound on WC

$g'(n)$ is a lower bound on $\max \{\text{runtime} \mid \text{len}(s) = n\}$

last time: $\text{WC}_{\text{pp}}(n) \in O(n^2)$

stopped $\text{WC}_{\text{pp}}(n) \in \Omega(___)$

How? \Rightarrow would like n^2 to match $O(___)$ bound $\Rightarrow \text{WC}_{\text{pp}}(n) \in \Theta(n^2)$
- Need to construct an example input for each n, for which the runtime varies like n^2. (an input family)

1. Try $S_n = 'aa ... a'$

 Description: $orall n \in \mathbb{N}$,

 S_n is a string

 $\land \forall i \in \text{range}(n), S[i] = 'a'$

 - The outer loop runs once only
 - The inner loop runs n times
 - Returns $n = \text{len}(S)$, runtime ~ n

2. Try $S_n = 'abbb ... b'$

 $orall n \in \mathbb{N}$, S_n is a string

 $\land S_n[0] = 'a'$

 $\land \forall i \in \text{range}(1, n), S[i] = 'b'$

 - The outer loop runs n times
 - Each inner loop runs 1 time
 - Return 1, runtime ~ n basic operations
What property do we need from S_n to get n^2 runtime?

- Need both loops to run a number of times that depends on n.

 - For inner loop to keep running
 - Need S to look like a palindrome at ends
 $$S_n = 'aaa aaa'$$

 - For the outer loop to keep running
 - S_n can't be a palindrome, and location of "failure" point must depend on n
 - Put 'b' near middle
 $$S_n = 'aa ... aba ... aa'$$

Update: I originally used $[n/2]$ but should have used $\lceil n/2 \rceil$. Why? because $\lfloor n/2 \rfloor$ puts the 'b' in exact middle for odd n, giving a palindrome!
description: binpat family

\[\forall n \in \mathbb{N}^+, \text{len}(S_n) = n, \ S_n \text{ is a string}, \ S_n \left[\left\lfloor \frac{n}{2} \right\rfloor \right] = 'b' \]

\[\forall i \in \text{range} \left(\left\lfloor \frac{n}{2} \right\rfloor, n \right), S_n[i] = 'a' \]

\[\forall i \in \text{range} \left(\left\lfloor \frac{n}{2} \right\rfloor, n \right), S_n[i] = 'a' \]

aside: \[\left\lfloor \frac{n}{2} \right\rfloor \]

\begin{align*}
\text{n=4} & : \text{aa ba} \\
\text{n=5} & : \text{aa abaa}
\end{align*}

\[\left\lfloor \frac{n}{2} \right\rfloor \]

\[\text{n=10} : \text{aa aaabaaaaaa} \]

\[\text{n=11} : \text{aaaaa a b aaaa} \]

iterations is roughly - ignore L \[\frac{n}{2} \]

\[\frac{n}{2} + \left(\frac{n}{2} - 1 \right) + \left(\frac{n}{2} - 2 \right) + \ldots + 1 \]

inner loop

prefix is palindrome

running time is at least

\[= \left(\frac{n}{2} \right) \left(\frac{n}{2} + 1 \right) + \frac{n}{2} \]
\[
= \frac{n^2}{8} + \frac{n}{4} + \frac{n}{2}
\geq \frac{n^2}{8}
\therefore \quad \omega_{p,p}(n) \in SU(n^2)
\therefore \quad \omega_{p,p}(n) \in \Theta(n^2)
\]

What about \(BC_{p,p}(n) = \min \{ \text{runtime}_{p,p} \on s | \text{len}(s) = n \} \)?

Want \(BC_{p,p}(n) \in \Theta(\text{some function}) \)

Find \(BC_{p,p} \in O(h'(n)) \)
and \(BC_{p,p} \in \Omega(h(n)) \)
Our runtime plot might look like:

\[g(n) \quad g'(n) \]

\[h(n) \quad h'(n) \]

The BC property means:

\[\exists c_1, n_2 \in \mathbb{R}^+, \forall n \in \mathbb{N}, \ n \geq n_2 \Rightarrow \]

\[\forall \text{ inputs } s \text{ with } \text{len}(s) = n, \ c_2 \cdot h(n) \leq \text{runtime}_{pp}(s) \]
BC \(p.p(n) \in O(h(n)) \) means

\[\exists C_3, n_3 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_3 \Rightarrow \exists \text{ inputs with } \text{len}(s) = n, \text{ runtime } p.p \leq C_3 h(n) \]

at least one.
below \(h(n) \)

* note: quantifiers switched from WC

for palindrome prefix:

consider input \(S_n \)

\[\forall n \in \mathbb{N}, \text{len}(s_n) = n \]
\[\forall i \in \text{range}(n), S[i] = 'a' \]

The # basic operations is

\[1 + 1 + n + 4 \uparrow \]
\[n = \text{len}(s) \]
\[\text{inner loop } \leq 2n \text{ for } n \geq 2 \]

\[\rightarrow BC_{p.p(n)} \in O(n) \]

would give \(BC_{p.p(n)} \in \Theta(n) \)

To show \(BC_{p.p}(n) \in \Omega(n) \)
need to show at least \(C \cdot n \) basic operations performed.

Let \(n \in \mathbb{N}^+ \), and

Let \(S_n \) be an arbitrary string of length \(n \),

and let \(R = \text{palindrome-prefix}(s) \).

Then \(1 \leq k \leq n \).

The the outer loop executes

\(n - R \) times without finding palindrome

in each case the inner loop executes

at least one

Then (on the final outer loop execution)

the inner loop runs \(R \) times

the total \# of iterations is at least

\[(n-k) \cdot 1 + R \]

\[= n \]

\[\geq 1 \cdot n \]
\[\therefore \quad BC_{p-p}(n) \in \Omega(n) \]

All together \(BC_{p-p}(n) \in \Theta(n) \).

\[\Box \]

phew!