Announcements

- Assignment 2 due August 3rd
 - Office hours:
 - Friday: 1 - 5PM and 6 - 10PM (BA7172)
- Exercise 9 and Lab 9 are up
 - Exercise 8 is due tonight at 11PM
- T2 scans/A1 remarks tomorrow (?)
- Course evaluations are up
Assignment 2 + PythonTA

- I'll ignore the "too many nested block", "too many local variables" and "too many statements" errors when marking
 - Worry about the other parts instead
Outline

- Efficiency
- Sorting Algorithms
Last Week

- Runtime complexity (efficiency) of Binary Search Trees
 - Searching in them is fast!
 - Relative to the height of the BST itself.
Runtime Complexity

"How does the runtime change as our input grows?"
Runtime Complexity

[5, 3, 2, 1, 4]

"How long would calling contains() take (relative to the size of the list):"
"How long would calling contains() take (relative to the size of the list)?"

If we're checking for the value 10:
Look through all items in the list.
Runtime Complexity

[5, 3, 2, 1, 4]

What if our list has 10 items? 20? 100?
Runtime Complexity

\[5, 3, 2, 1, 4\]

What if our list has 10 items? 20? 100?

We would have to check through the entire list in order to say an item's not in it.
Runtime Complexity

\[1, 3, 4, 5, 6, 7, 9\]

What if our list is sorted?
Runtime Complexity

[1, 3, 4, 5, 6, 7, 9]

Is 8 in this list?
Binary Search

[1, 3, 4, 5, 6, 7, 9]

Look at the middle item.
Binary Search

\[1, 3, 4, 5, 6, 7, 9\]

Look at the middle item.

\(8 > 5\) so look to the right of 5.
Binary Search

[1, 3, 4, 5, 6, 7, 9]

Look at the middle item.
Binary Search

[1, 3, 4, 5, 6, 7, 9]

Look at the middle item.
Binary Search

\[1, 3, 4, 5, 6, 7, 9]\n
We only have 1 item left.

Nothing else to look at!
Runtime Complexity

\[[1, 3, 4, 5, 6, 7, 9] \]

We only looked at 3 items!

Much better than looking through the whole list!
Binary Search

- Halve the number of items we have to look at until we reach an empty list or a list with only 1 item
Binary Search

- Look at 1 item when the size is n
- Look at 1 item when the size is n / 2
- Look at 1 item when the size is n / 4
- Look at 1 item when the size is n / 8
- ...
- Look at 1 item when the size is 1
Binary Search

- Look at 1 item when the size is n
- Look at 1 item when the size is $n/2$
- Look at 1 item when the size is $n/4$
- Look at 1 item when the size is $n/8$
- ...
- Look at 1 item when the size is 1

How many items do we look at in total?

How many times can we halve n before it's ≤ 1?
Halving n

- We can halve $n \log(n)$ times
 - $\log(n) = \log_2(n)$
Halving n

- Math! Look for the first number 2^k that is $\geq n$

$$2^k \geq n$$
Halving n

- Math! Look for the first number 2^k that is $\geq n$

$$2^k \geq n$$

$$k \geq \log_2(n)$$
lg(n)

- Usually appears when we have to split a problem into even halves.
 - Not every problem that halves will involve $\lg(n)$, but many do.
Contains

- Unsorted list: n items at most
- Sorted list: $\log_2 n$ items at most
Contains

- Unsorted list: n items at most
- Sorted list: \(\log n \) items at most
- BST: height items at most
 - \(\log n \) if balanced, n if unbalanced
Contains

- Unsorted list: n items at most
- Sorted list: \(\log n\) items at most
- BST: height items at most
 - \(\log n\) if balanced, \(n\) if unbalanced
- Tree? LinkedList? Stack? Queue? BinaryTree?
 - \(n\) item for all of these at most
Big-O

- We can count "how many lines we have to run"
 - I.e. "The number of steps we take."
Big-O

```python
sum = 0
for i in range(n):
    print(i)
    sum += i

return sum
```
sum = 0
for i in range(n):
 print(i)
 sum += i

return sum
sum = 0
for i in range(n):
 print(i)
 sum += i

return sum
Big-O

```python
sum = 0
for i in range(n):
    print(i)
    sum += i
return sum
```

1 + n * (1 + 1) + 1 steps

Runs n times

1 step * n times

1 step
sum = 0

for i in range(n):
 print(i)
 sum += i

return sum

1 step

Runs n times
1 step * n times
1 step * n times
1 step

2n + 2 steps
Big-O

- $2n + 2$
- As n gets larger, the $+ 2$ has a negligible effect.
- The coefficient 2 also isn't too important -- it doesn't change.
- Simplify!
Big-O

● 2n + 2 is in O(n)
 ○ O(n): "Order of n"
 ○ "The runtime grows linearly with regards to n."

● We care about how runtime grows in relation to n
Big-O (Formally)

- Upper bound on growth
- If something is in O(n), its runtime is always \(\leq cn + B \) for some \(c \) and \(B \)
 - \(c \) is any coefficient
 - \(B \) is any number
 - Previous example, \(c \) and \(B \) were both 2.
Big-O (Less formal)

● Simpler to understand:
"Runtime grows linearly/proportionally with respect to n"
Orders of Complexity

● O(1): Constant time
 ○ No matter how n changes, the number of steps are the same
Orders of Complexity

● O(1): Constant time
 ○ No matter how n changes, the number of steps are the same

● O(lgn): Logarithmic time
 ○ Double n in order to see an increase in steps taken
Orders of Complexity

- O(n): Linear time
 - Steps taken are proportional to n
Orders of Complexity

- O(n): Linear time
 - Steps taken are proportional to n
- O(n\log n):
 - Almost linear. Easier explained via examples.
Orders of Complexity

- **O(n):** Linear time
 - Steps taken are proportional to n

- **O(nlgn):**
 - Almost linear. Easier explained via examples.

- **O(n^2):** Quadratic time
 - n steps taken for each item in n
Orders of Complexity

● $O(2^n)$: Exponential time
 ○ n grows by 2, the amount of work done doubles
 ○ Minimax for A2 does this!
 ■ n is "the maximum number of attacks we can perform in a game"
Exponential Time: Minimax

Each state can split into 2 at most.

= 2^n states in total
Big-O

- Simplify and put runtime in terms of \(n \)
 - Keep the fastest growing part
 - Drop everything else (smaller order values, coefficients, etc.)
Big-O

- $7n^2 + 3n + 4$
 - Simplifies to $O(n^2)$
 - n doesn't grow as fast as n^2 -- it'll be outshadowed by n^2 eventually.
Complexity Order

For non-small ns:

$$1 \leq \log n \leq n \leq n \log n \leq n^2 \leq 2^n$$
Complexity Order

For non-small ns:

\[1 \leq \log_8 n \leq 8 \leq 8 \log_8 n \leq 8^2 \leq 2^8 \]

Plug 8 in for n!
Complexity Order

For non-small ns:

1 <= 3 <= 8 <= 24 <= 64 <= 256
Growth Rate
Growth Rate

The graph shows the growth rate for different functions as a function of n. The functions represented include:

- $O(1)$
- $O(n)$
- $O(n \log n)$
- $O(n^2)$
- $O(n^n)$
- $O(n^{n+2})$

The x-axis represents the variable n, and the y-axis represents the runtime. The graph illustrates how each function's runtime increases as n grows.
Counting Steps

sum = 0
for i in range(n):
 print(i)
 for j in range(n):
 print(i * j)
 sum += i * j

return sum
Counting Steps

```python
sum = 0  # 1 step
for i in range(n):
    print(i)  # 1 step
    for j in range(n):
        print(i * j)  # 1 step
        sum += i * j  # 1 step

return sum  # 1 step
```
Counting Steps

sum = 0 1 step
for i in range(n): Runs n times
 print(i) 1 step * n
 for j in range(n):
 print(i * j) 1 step * n
 sum += i * j 1 step * n

return sum 1 step
Counting Steps

\[
\text{sum} = 0 \\
\text{for } i \text{ in range}(n): \text{ Runs n times} \\
\quad \text{print}(i) \text{ 1 step * n} \\
\text{for } j \text{ in range}(n): \text{ Runs n times} \\
\quad \text{print}(i * j) \text{ 1 step * n * n} \\
\quad \text{sum += i * j} \text{ 1 step * n * n} \\
\text{return sum} \text{ 1 step}
\]
Counting Steps

sum = 0 1 step
for i in range(n):
 print(i) Runs n times
 for j in range(n):
 print(i * j) Runs n^2 times
 sum += i * j Runs n^2 times

return sum 1 step
Counting Steps

sum = 0 # 1 step
for i in range(n):
 print(i) # Runs n times
 for j in range(n):
 print(i * j) # Runs n^2 times
 j

sum += i * j # Runs n^2 times

return sum # 1 step
Counting Steps

```
sum = 0  
for i in range(n):
    print(i)  
    for j in range(n):
        print(i * j)
    sum += i * j
return sum
```

1 step

Runs n times

2n^2 + n + 1

Runs n^2 times

Runs n^2 times

1 step

59
Counting Steps

sum = 0
for i in range(n):
 print(i)
 for j in range(n):
 print(i * j)
 j
 j
 sum += i * j
return sum
Counting Steps

def find_max(t):
 if not t.right:
 return t.value

 return find_max(t.right)
def find_max(t):
 if not t.right:
 return t.value
 return find_max(t.right)

Counting Steps

How many times?
1 step
1 step
1 step
Counting Steps

Count the longest path of 'right subtrees' from root.
def find_max(t):
 if not t.right:
 return t.value
 return find_max(t.right)

At most: height of t
1 step * height
1 step* height
1 step * height
Counting Steps

def find_max(t):
 At most: height of t
 if not t.right:
 O(height)
 1 step * height
 O(lgn) for balanced BST
 1 step* height
 O(n) for unbalanced
 1 step * height
Finding Runtime from Code

- Count manually
- Or: Consider how many items you need to look at in relation to n
- Practice!
Finding Runtime from Times

- Time how long it takes to run code

<table>
<thead>
<tr>
<th>n</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>40</td>
</tr>
</tbody>
</table>
Finding Runtime from Times

Linear! $O(n)$ runtime
Given this graph, what runtime complexity fits best?

A) $O(1)$
B) $O(lgn)$
C) $O(n)$
D) $O(n^2)$
Answer:

D) $O(n^2)$
Given this graph, what runtime complexity fits best?

A) O(1) B) O(lgn) C) O(n) D) O(n^2)

Of these choices, n^2 is the only one that curves upwards.
Given these times, what runtime complexity fits best?

<table>
<thead>
<tr>
<th>n</th>
<th>Time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5.0</td>
</tr>
<tr>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>100</td>
<td>5.0</td>
</tr>
<tr>
<td>1000</td>
<td>5.0</td>
</tr>
</tbody>
</table>

A) O(1) B) O(lgn) C) O(n) D) O(n^2)
Answer:

A) O(1)
Break!
For 10 minutes. :)
Sorting Algorithms

- Bubble Sort
- Insertion Sort
- Selection Sort
Selection Sort

Split list into sorted and unsorted parts. Sorted is initially empty.

5 3 1 9 8 4

Sorted Unsorted
Selection Sort

Find the smallest number in our unsorted part.

Sorted Unsorted

5 3 1 9 8 4
Selection Sort

Extend the sorted area by 1.

Sorted Unsorted
Selection Sort

Swap that item with the smallest item found.

Sorted Unsorted
Selection Sort

Find the smallest number in our unsorted part.

Sorted | Unsorted
1 | 3 | 5 | 9 | 8 | 4
Selection Sort

Extend the sorted area by 1.

Sorted 1 3 5 9 8 4 Unsorted
Selection Sort

Don't need to swap 3 with anything.

Sorted Unsorted
Selection Sort

Find the smallest number in our unsorted part.

Sorted 1 3 5 9 8 4 Unsorted
Selection Sort

Extend the sorted area by 1.

1 3 5 9 8 4

Sorted Unsorted
Selection Sort

Swap with the smallest number.

1 3 4 9 8 5

Sorted Unsorted
Selection Sort

Repeat, swapping 9 with 5.

1 3 4 5 8 9

Sorted Unsorted
Selection Sort

8 stays in the same place.
Selection Sort

9 stays in the same place.

Sorted | Unsorted

1 | 3 | 4 | 5 | 8 | 9
Selection Sort

- Algorithm is roughly:
 for i in range(n):
 Find the smallest number in lst[i:]
 Swap lst[i] with the smallest.
Selection Sort

Looking for the smallest number means looking through the entire unsorted part.

\[[5, 3, 1, 9, 8, 4]\] Look at all 6 items
\[[1, 3, 5, 9, 8, 4]\] Look at 5 unsorted items
\[[1, 3, 5, 9, 8, 4]\] Look at 4 unsorted items
\[[1, 3, 4, 9, 8, 5]\] Look at 3 unsorted items
Selection Sort

- That means there are
 \[n + (n - 1) + (n - 2) + \ldots + 1 \]
 Steps for 'searching for the smallest' in total

- This is in \(O(n^2) \)
 - Math proof for that; I'm not getting into it.
Selection Sort

- Algorithm is roughly:

  ```python
  for i in range(n):
      Find the smallest number in lst[i:]
      Swap lst[i] with the smallest.
  ```

 Runs n times.
Selection Sort

- Algorithm is roughly:

  ```python
  for i in range(n):
    Find the smallest number in lst[i:]
    Swap lst[i] with the smallest.
  ```

 Takes O(n) steps.

 Runs n times.
Selection Sort

- Runtime is at most $n \times n = O(n^2)$ steps
 - Big-O is an upper bound! We can simplify things a bit if we'd like!
- Insertion + Bubble Sort are also $O(n^2)$ algorithms
- Can we do better than $O(n^2)$ when sorting?
Merge Sort

Split it into 2 halves.

5 3 1 8

6 4 7 2
Merge Sort

Sort the 2 halves (recursively).

1 3 5 8

2 4 6 7
Merge Sort

Merge these lists together.

1 3 5 8

2 4 6 7
Merge Sort

Merge these lists together.

1 3 5 8
2 4 6 7

1
Merge Sort

Merge these lists together.

1 3 5 8

1 2

2 4 6 7
Merge Sort

Merge these lists together.

1 3 5 8
2 4 6 7
1 2 3
Merge Sort

Merge these lists together.

1 3 5 8

2 4 6 7

1 2 3 4
Merge Sort

Merge these lists together.

1 3 5 8 2 4 6 7

1 2 3 4 5
Merge Sort

Merge these lists together.

1 3 5 8
2 4 6 7
1 2 3 4 5 6
Merge Sort

Merge these lists together.

1 3 5 8

2 4 6 7

1 2 3 4 5 6 7
Merge Sort

Merge these lists together.

1 3 5 8
2 4 6 7
1 2 3 4 5 6 7 8
Merge Sort

- Merging 2 sorted lists takes $O(n)$ time
 - Where n is the sum of the size of both lists
 - We only have to look at each item once!
Merge Sort

- Calling mergesort recursively means we're writing a recursive function
 - Base case?
Merge Sort

Suppose we keep splitting our list:

5 3 1 8 6 4 7 2
Merge Sort

Suppose we keep splitting our list:

5 3
1 8
Merge Sort

Suppose we keep splitting our list:

5 3
Merge Sort

A list with 0 or 1 elements is already sorted!

5
Merge Sort

def mergesort(lst):
 if len(lst) <= 1:
 return(lst)
def mergesort(lst):
 if len(lst) <= 1:
 return(lst)

 ● Split lst in half
 ● Sort each half
 ● Merge the 2 halves
def mergesort(lst):
 if len(lst) <= 1:
 return(lst)
 left = lst[:len(lst)//2]
 right = lst[len(lst)//2:]
 ● Sort each half
 ● Merge the 2 halves
def mergesort(lst):
 if len(lst) <= 1:
 return(lst)
 left = lst[:len(lst)//2]
 right = lst[:len(lst)//2]
 sorted_left = mergesort(left)
 sorted_right = mergesort(right)
 ● Merge the 2 halves
sorted_left = mergesort(left)
sorted_right = mergesort(right)
new_list = []
left_index = 0
right_index = 0
Merge Sort

```python
ew_list = []
left_index = 0
right_index = 0
while left_index < len(sorted_left)
    and right_index < len(sorted_right):
```
while left_index < len(sorted_left) and right_index < len(sorted_right):
 if sorted_left[left_index] < sorted_right[right_index]:
 new_list.append(sorted_left[left_index])
 left_index += 1
while left_index < len(sorted_left) and right_index < len(sorted_right):
 if sorted_left[left_index] < sorted_right[right_index]:
 new_list.append(sorted_left[left_index])
 left_index += 1
 else:
 new_list.append(sorted_right[right_index])
 right_index += 1
while left_index < len(sorted_left) and right_index < len(sorted_right):
 if sorted_left[left_index] < sorted_right[right_index]:
 new_list.append(sorted_left[left_index])
 left_index += 1
 else:
 new_list.append(sorted_right[right_index])
 right_index += 1
return new_list + sorted_left[left_index:] + sorted_right[right_index:]
Merge Sort

- Many different approaches to merging
 - Removing from the front until they're both empty is one approach
- If you take advantage of the fact that the list are sorted, the runtime will be $O(n)$.
Merge Sort Runtime Complexity

1. Break list into 2 halves
2. Sort each half recursively
3. Merge the halves
Merge Sort Runtime Complexity

1. Break list into 2 halves \(O(n) \)
2. Sort each half recursively
3. Merge the halves \(O(n) \)

Runtime is \(O(n) \) * the number of recursive calls we make.
Merge Sort

Consider the number of steps at each division.

5 3 1 8 6 4 7 2
Merge Sort

Consider the number of steps at each division.

```
  5  3  1  8  6  4  7  2
  5  3  1  8  6  4  7  2
```
Merge Sort

Consider the number of steps at each division.
Merge Sort

Consider the number of steps at each division.

5 3 1 8 6 4 7 2

5 3 1 8 6 4 7 2

5 3 1 8 6 4 7 2

5 3 1 8 6 4 7 2

5 3 1 8 6 4 7 2
Merge Sort

At most: 4 levels of recursion.
Merge Sort

1 step at each case in the bottom level.
Merge Sort

Merging takes 2 steps (8 total in that level)
Merge Sort

Merging takes 4 steps (8 total in that level)
Merge Sort

Merging takes 8 steps in our initial call.

```
 5  3  1  8  6  4  7  2
 5  3  4  1  8   6  4  7  2
 5  2  3  1  2  8   6  2  4  7  2
 1  1  1  1  1  1  1  1  1  1
```
Merge Sort

- $O(n)$ steps at each level
- $\lg n$ levels in total
 - Because we keep halving it as much as we can.
- Runtime: $O(n) \times \lg n = O(n \lg n)$
Recursive Runtime Complexity

- Usually you can split it into levels of recursive calls
 - How many levels are there at most?
 - How many steps do you take at each level?
 - Runtime complexity is the product of those 2.
Binary Search

- Ig£ levels at most
 - Kept halving the list we had to look through!
- Looked at only 1 item per level
- Ig£ * O(1) = O(lgn)
Quick Sort

- Split list into 3 parts
 - One containing all values < something
 - One containing all values == something
 - One containing all values > something
- "Something" is a pivot value
Quick Sort

Suppose 3 is our pivot.

5 1 3 8 6 4 7 2
Quick Sort

Split into parts < 3, == 3, > 3

1 2 3 5 8 6 4 7 2

1 2 3 5 8 6 4 7
Quick Sort

If 5 was our pivot instead:

\[
\begin{array}{cccccccc}
5 & 1 & 3 & 8 & 6 & 4 & 7 & 2 \\
1 & 3 & 4 & 2 & 5 & 8 & 6 & 7
\end{array}
\]
Quick Sort

Sort each part recursively.

1 3 4 2 5 8 6 7
Quick Sort

Sort each part recursively.

1 2 3 4 5 6 7 8
Quick Sort

Put these lists together and return it.

1 2 3 4 5 6 7 8
Quick Sort

● Same base case as Merge Sort
 ○ A list with only 1 element is already sorted!

● Picking a pivot
 ○ We can pick whatever we want: Typically, the first item, last item, or middle item.
 ○ For now: Use the item at index 0 as the pivot.
Quick Sort

def quicksort(lst):
 if len(lst) <= 1:
 return lst
 ● Get the pivot (item at index 0)
 ● Split it into 3 parts
 ● Sort each part
 ● Put the parts together + return
Quick Sort

def quicksort(lst):
 if len(lst) <= 1:
 return lst

 pivot = lst[0]
 ● Split it into 3 parts
 ● Sort each part
 ● Put the parts together + return
Quick Sort

pivot = lst[0]
left = []
middle = []
right = []
Quick Sort

pivot = lst[0]
left = []
middle = []
right = []
for item in lst:
Quick Sort

for item in lst:
 if item < pivot:
 left.append(item)
Quick Sort

for item in lst:
 if item < pivot:
 left.append(item)
 elif item > pivot:
 right.append(item)
for item in lst:
 if item < pivot:
 left.append(item)
 elif item > pivot:
 right.append(item)
 else:
 middle.append(item)
Quick Sort

[End loop for splitting lst]

sorted_left = quicksort(left)
sorted_right = quicksort(right)
Quick Sort

[End loop for splitting lst]

sorted_left = quicksort(left)

sorted_right = quicksort(right)

return sorted_left + middle + sorted_right
Quick Sort Runtime Complexity

- Picking a pivot
- Splitting the list into 3 parts
- Sorting the parts
- Returning a list
Quick Sort Runtime Complexity

- Picking a pivot \(\mathcal{O}(1) \) for picking \([0]\)
- Splitting the list into 3 parts \(\mathcal{O}(n) \)
- Sorting the parts ?
- Returning a list \(\mathcal{O}(n) \)

How many levels of recursion do we have?
Quick Sort

Picking the median as pivots

5 1 3 8 6 4 7 2
Quick Sort

Picking the median as pivots

1 3 4 2 5 8 6 7
Quick Sort

Picking the median as pivots

1 3 4 2 5 8 6 7
1 2 3 4 6 7 8
Quick Sort

Picking the median as pivots

1 3 4 2
5
8 6 7

1 2 3 4
6 7 8

1 2
6 8
Quick Sort

Picking the median as pivots

1 3 4 2 5 8 6 7
1 2 3 4 6 7 8
1 2 6 8
1 2
Quick Sort

Picking the median as pivots: lgn levels

1 3 4 2 5 8 6 7
1 2 3 4 6 7 8
1 2 6 8
1 2 6 8
Quick Sort

Picking the median as pivots: $\log n$ levels

$\log n$ levels $\times O(n)$ steps per level
$= O(n \log n)$ runtime complexity
Quick Sort

Picking the smallest number as pivots.

5 1 3 8 6 4 7 2
Quick Sort

Picking the smallest number as pivots.

1 5 3 8 6 4 7 2
Quick Sort

Picking the smallest number as pivots.
Quick Sort

Picking the smallest number as pivots.

1 5 3 8 6 4 7 2

2 5 3 8 6 4 7

3 5 8 6 4 7
Quick Sort

(And so on...)

1 5 3 8 6 4 7 2

2

3

3 5 8 6 4 7
Quick Sort

Smallest number = n levels

1 5 3 8 6 4 7 2

2 5 3 8 6 4 7

3 5 8 6 4 7
Quick Sort

Smallest number = n levels

1 5 2 9 6 4 7 3

n levels * O(n) steps per level
= O(n^2) runtime complexity
Quick Sort

- Best case scenario: $O(n \log n)$
 - Pivots chosen are always along the middle

- Worst case scenario: $O(n^2)$
 - Pivots chosen are around the min/max
Homework

- Assignment 2 due Friday (tomorrow)
 - Office hours tomorrow in BA7172
- Exercise 9 is out (due Thursday)
 - Lab 9 is out
- Exercise 8 due tonight (11 PM)