Announcements & Logistics

A1 due Friday Oct 19.
Midterm Tuesday Oct 23.

No prep for next week. (Use the extra time for studying!)
From last time, `LinkedList.__contains__`

We care about running time as a function of input size:

- “constant” \(O(1)\)
- “linear” \(O(n)\)
- “quadratic” \(O(n^2)\)
From last time, LinkedList.__contains__

def __contains__(self, item: Any) -> bool:
 curr = self._first
 while curr is not None:
 if curr.item == item:
 return True
 return False
From last time, `LinkedList.__contains__`

Running time can vary, even for a fixed input size!

We’ll revisit this idea later in the course.
Recursion

CSC148, INTRODUCTION TO COMPUTER SCIENCE
DAVID LIU
Data structure informs code structure

```python
i = 0
while i < len(lst):
    ... lst[i] ...
i += 1

curr = lst._first
while curr is not None:
    ... curr.item ...
curr = curr.next
```
Data structure informs code structure

```
List[int]

for x in lst:
    ... x ...

List[
    List[int]
]

for lst in lst_of_lsts:
    for x in lst:
        ... x ...
```
Data structure informs code structure

```python
List[
    List[
        List[int]
    ]
]  
for lst_of_lsts in lst_of_lsts_of_lsts:
    for lst in lst_of_lsts:
        for x in lst:
            ... x ...
```
Data structure informs code structure

A nested list is...

- An integer
- A list of nested lists

```python
def nested_f(obj):
    if isinstance(obj, int):
        ...
    else:
        for sublist in obj:
            ... nested_f(sublist) ...
```
Partial tracing practice

Attempting to fully trace recursive code is time-consuming and error prone.

When tracing recursive code, don’t trace into recursive calls! Instead, assume each call is correct, and make sure the rest of the code uses those calls correctly.