Announcements

Final lab this week, no prep for next week.

Posted: Assignment 2 FAQ, office hour schedule, sample tests, melody contest.
Recursive Sorting

CSC148, INTRODUCTION TO COMPUTER SCIENCE

DAVID LIU
Splitting lists, divide-and-conquer

1. **Divide** the input list into smaller lists.
2. **Recurse** on each smaller list.
3. **Combine** the results of each recursive call.
mergesort and quicksort
Running time demo

mergesort, quicksort, and insertion sort
Worksheet!

How do we analyse the running time of recursive algorithms in general? (Not just for trees.)

Two key parts:
- how long do the non-recursive parts take?
- what is the structure of the recursive calls?
def mergesort(lst):
 if len(lst) < 2:
 return lst[:]
 else:
 mid = len(lst) // 2
 left = lst[:mid]
 right = lst[mid:]
 left_sorted = mergesort(left)
 right_sorted = mergesort(right)
 return _merge(left_sorted, right_sorted)
\[n + n + n + \cdots + n = O(n \log n) \]
def quicksort(lst):
 if len(lst) < 2:
 return lst[:]
 else:
 pivot = lst[0]
 smaller, bigger = _partition(lst[1:], pivot)

 smaller_sorted = quicksort(smaller)
 bigger_sorted = quicksort(bigger)

 return smaller_sorted + [pivot] + bigger_sorted

non-rec O(n)
IF always
pick median

$O(n \log n)$
If always pick min

\[n \]
\[n-1 + 1 \]
\[n-2 + 1 \]
\[n-3 + 1 \]

\[2 + 1 \]
\[1 + 1 \]

\[O(n^2) \]

* len 0 list takes 1 step
Quicksort: in theory, a mixed bag

If we always choose a pivot that’s an approximate median, then the two partitions are roughly equal, and the running time is $O(n \log(n))$.

If we always choose a pivot that’s an approximate min/max, then they two partitions are very unequal, and the running time is $O(n^2)$.
The limitations of Big-Oh

Big-Oh notation is a simplification of running time analysis, and allows us to ignore constants when analysing efficiency.

But constants can make a difference, too!

$O(n \log n)$ vs. $O(n \log n)$ vs. $O(n^2)$
In-place quicksort

MUTATING THE INPUT LIST IN A SPACE-EFFICIENT WAY.
The key helper: in-place partition

```
10 | 7 | 20 | 30 | 3 | 6
```

```
10 | ≤ | ??? | > |
```

```
10 | 7 | 3 | 6 | 20 | 30
```
def quicksort(lst):
 if len(lst) < 2:
 return lst[:]
 else:
 pivot = lst[0]

 smaller, bigger = _partition(lst[1:], pivot)

 smaller_sorted = quicksort(smaller)
 bigger_sorted = quicksort(bigger)

 return smaller_sorted + [pivot] + bigger_sorted
Simulating slicing with indexes

We often want to operate on just part of a list:
\[f(lst[start:end]) \]

Rather than create a new list object, we pass in the indexes:
\[f(lst, start, end) \]
Simulating slicing with indexes

_in_place_partition(lst) \rightarrow
_in_place_partition(lst, \texttt{start}, \texttt{end})

quicksort(lst) \rightarrow
_in_place_quicksort(lst, \texttt{start}, \texttt{end})