
CSC 121: Computer Science for Statistics

Radford M. Neal, University of Toronto, 2017

http://www.cs.utoronto.ca/∼radford/csc121/

Week 7

Data Frames Intro

Sourced from:

Operations on Numeric Vectors that Produce One Number

R has several functions that take a numeric vector or matrix as their argument,

and return a single number as their value, including:

sum finds the sum of all elements.

prod finds the product of all elements.

max finds the largest of all elements.

min finds the smallest of all elements.

mean finds the mean (average) of all elements.

For example:

> u <- c(3,5,1,9)

> sum(u)

[1] 18

This does pretty much the same thing as the following loop:

> s <- 0

> for (x in u) s <- s + x

> s

[1] 18

However, sum(u) is faster, and in some cases more accurate.

Features of R for Statistics

R is a general purpose programming language. You can write all sorts of

programs in R — video games, accounting packages, word processors, programs

for navigating rocket ships to Mars, . . .

But R is more appropriate for some of these tasks than others. It’s probably not

the best choice for video game programming — games need to respond quickly,

but speed is not R’s strong point. On the other hand, some features of R that are

not common in other languages are especially useful for statistical applications.

Here are some:

• Specifying function arguments by name, with arguments often having default

values — very useful for functions implementing statistical methods.

• Names for elements of vectors and lists, and for rows and columns of matrices

and data frames — “age” is a better label for a column than the number 17.

• R’s “data frames” for storing observations in a way that is convenient for

statistical analysis.

• Special NA values to indicate where data is missing

We’ve talked about the first two, and will now talk about the last two.

Data Frames

One major use of classes is for R’s data.frame objects, which are the most

common way that data is represented in R.

A data frame is sort of like a list and sort of like a matrix. Each “row” of a data

frame holds information on some individual, object, case, or whatever. The

“columns” of a data frame correspond to variables whose values have been

measured for each case. These variables can be numbers, logical (TRUE/FALSE)

values, or character strings (but all values for one variable have the same type).

For example, here’s how R prints a small data frame containing the heights and

weights of three people:

> heights_and_weights

name height weight

1 Fred 62 144

2 Mary 60 131

3 Joe 71 182

A data frame is really a list, with named elements that are the columns of the

data frame, but with a data.frame class attribute that makes R do things like

printing and subscripting differently from an ordinary list.

Getting Data Out of a Data Frame

You can get data from a data frame using subscripting operations similar to those

for a matrix (by row and column index), or by operations similar to a list (using

names of variables). For example:

> heights_and_weights # The data frame from the last slide

name height weight

1 Fred 62 144

2 Mary 60 131

3 Joe 71 182

> heights_and_weights$height # All values of the "height" variable

[1] 62 60 71

> heights_and_weights[2,] # All values for the 2nd person

name height weight

2 Mary 60 131

> heights_and_weights[2,3] # Value of 3rd variable for 2nd person

[1] 131

> heights_and_weights$weight[2] # ... and the same, by variable name

[1] 131

Creating a Data Frame

Using as.data.frame, you can create a data frame from a list (it just adds the

data.frame class attribute) or from a matrix (it has to split it up into columns).

If you don’t provide variable names, R uses V1, V2, etc.

Examples:

> as.data.frame (list (abc=c(1,3,2),

+ pqr=c(TRUE,FALSE,FALSE),

+ xyz=c("a","bb","c")))

abc pqr xyz

1 1 TRUE a

2 3 FALSE bb

3 2 FALSE c

>

> as.data.frame (matrix (1:12, nrow=3, ncol=4))

V1 V2 V3 V4

1 1 4 7 10

2 2 5 8 11

3 3 6 9 12

If a matrix has row and column names, they become those of the data frame.

can also just use data.frame()

Reading Data Into a Data Frame

The read.table function creates a data frame using data it reads from a text file.

The file has to contain one line for each row of the data frame, containing a value

(eg, a number, TRUE/FALSE, a string) for each variable for the case corresponding

to that row.

If a header=TRUE argument is given to read.table, the names of the variables

will be taken from the first line of the file.

Here’s how we could read the heights and weights data frame from a file on the

course web page:

heights_and_weights <-

read.table ("http://www.cs.utoronto.ca/~radford/csc121/data7",

header=TRUE)

The contents of the file read are as below:

name height weight

Fred 62 144

Mary 60 131

Joe 71 182

Indicating Missing Values with NA

It is very common for data collected to have some missing values — where the

subject declined to answer one of the survey questions, or the interviewer forgot

to fill out one page of the form, or where the machine taking the readings was

broken that day.

Sometimes these values are indicated by some special number like −999. But this

is very unreliable. The person analysing the data may not realize that this is

what −999 is supposed to mean, leading to drastically incorrect averages. Or

there may be an actual, non-missing, value of −999!

R supports representation of missing data by a special NA value. NA can be the

value of an element in a vector, matrix, or data frame. For example:

> c(5,1,NA,8,NA)

[1] 5 1 NA 8 NA

Arithmetic on NA values

Arithmetic operations where one or both operands are NA produce NA as the

result:

> a <- c(5,1,NA,8,NA)

> a+100

[1] 105 101 NA 108 NA

> b <- c(10,NA,20,NA,NA)

> a*b

[1] 50 NA NA NA NA

Comparisons with NA also produce NA, rather than TRUE or FALSE. Trying to

use NA as an if or while condition gives an error:

> a == 1

[1] FALSE TRUE NA FALSE NA

> if (a[3]==1) cat("true\n") else cat("false\n")

Error in if (a[3] == 1) cat("true\n") else cat("false\n") :

missing value where TRUE/FALSE needed

Checking For NA

Sometimes you need to check whether a value is NA. But you can’t do this with

something like if (a == NA) ... — that will always give an error!

Instead, you can use the is.na function. It can be applied to a single value,

giving TRUE or FALSE, or a vector of values, giving a logical vector.

For example, R’s built-in airquality demonstration dataset has some NA values.

The following statements create a modified version of the airquality data frame

in which missing values for solar radiation are replaced by the average of all the

non-missing measurements (found with mean using the na.rm option):

ave_solar <- mean (airquality$Solar.R, na.rm=TRUE)

mod_airquality <- airquality

for (i in 1:nrow(mod_airquality))

if (is.na(mod_airquality$Solar.R[i]))

mod_airquality$Solar.R[i] <- ave_solar

(We’ll see later how one can do this more easily using logical indexes.)

NA and NaN
A value will also be “missing” if it is the result of an undefined mathematical

operation. R prints such values as NaN, not NA, but is.na will be TRUE for

them. Operations on NaN produce NaN as a result. Here are some examples:

> 0/0

[1] NaN

> sqrt(-1)

[1] NaN

Warning message:

In sqrt(-1) : NaNs produced

> x <- 0/0

> 10*x

[1] NaN

> v <- asin((-2):2)

Warning message:

In asin((-2):2) : NaNs produced

> v

[1] NaN -1.570796 0.000000 1.570796 NaN

> v / 0

[1] NaN -Inf NaN Inf NaN

