
For Loops

CSC121
Mark Kazakevich

Repeating code
● We’ve talked about how functions are used to minimize

repetitive code

● If we have a block of code that we want to be able to bring
up and use any time, and with different data, we can define a
function and put that block of code in it

● Today we’re going to look at another way we can deal with
code that needs to be repeated

Repeating code
● Often there will be times where writing a function isn’t

going to be enough to get rid of your need to repeat code.

● For example:
○ What if you wanted to call a function 1000 times?
○ You can write a function that calls that function 1000

times, but that is going to require a file that is
1000 lines long

○ Not very efficient...

Repeating code
● More relevant example for us:

○ What if we wanted to do something with each
individual element of a vector?

○ If we had a vector v <- c(4, 35, 23, 12, 7, 2),
right now we would have to index every element
manually:
v[1], v[2], v[3], … and so on.

○ Not very efficient…

● We want a way to get to all of the values individually
without writing out the numbers each time

Loops
● In order to help us with this problem, we’re going to

introduce a new concept: Loops

● Simply: Loops allow us to repeat a block of code

● Like if-statements, this is another way to change the
program flow of R.

● Today we will be looking at one type of loop in R,
the for loop

for loops
● A for loop is a statement that allows us to repeat code a set

number of times.

● The number of times it repeats depends on some ordered
set of values
○ In our case, vectors!

● For loops take each each element in a vector, save it to a
variable, and execute the code in the loop
○ It then repeats this process for every element.

● Let’s take a closer look

for loop Format
for (element in vector) {

loop body

}

This block is
considered one
for loop

Let’s talk about what these words all mean

for loop Format
for (element in vector) {

loop body
}

for
Indicates that this is a for loop statement

for loop Format
for (element in vector) {

loop body
}

element in vector
element is the variable name we are going to give to
every element in vector as we repeat the code
We call this iterating over a vector:
“For every element element in the vector vector”

for loop Format
for (element in vector) {

loop body
}

loop body
● These lines of code (which are indented in the for

loop), will repeat for every element in the vector.
● We can use the value of the variable element

and work with it all the way to the end of the for
loop

Let’s see an example
numbers <- c(23, 5, 47)
for (n in numbers) {

cat(n)
cat(“\n”)

}

Let’s see an example
numbers <- c(23, 5, 47)
for (n in numbers) {

cat(n)
cat(“\n”)

}

for
Indicates that this is a for loop statement

Let’s see an example
numbers <- c(23, 5, 47)
for (n in numbers) {

cat(n)
cat(“\n”)

}

n in numbers
We are going to “iterate” over the vector number.
Every time we repeat the loop body, we will change
the value of the variable n to be the next number in
the vector numbers

Let’s see an example
numbers <- c(23, 5, 47)
for (n in numbers) {

cat(n)
cat(“\n”)

}

cat(n) and cat(“\n”)
This is the loop body. We are using the variable n
which is the current value from numbers that we have
iterated to.

Reminder:
“\n” is a string with the
newline character. It has
nothing to do with the
variable n.

Running the example
numbers <- c(23, 5, 47)
for (n in numbers) {

cat(n)
cat(“\n”)

}

1st iteration of loop:
Current value of n: 23

23R Console output after
running loop body:

Running the example
numbers <- c(23, 5, 47)
for (n in numbers) {

cat(n)
cat(“\n”)

}

2nd iteration of loop:
Current value of n: 5

23
5

R Console output after
running loop body:

Running the example
numbers <- c(23, 5, 47)
for (n in numbers) {

cat(n)
cat(“\n”)

}

3rd iteration of loop:
Current value of n: 47

23
5
47

R Console output after
running loop body:

Running the example
numbers <- c(23, 5, 47)
for (n in numbers) {

cat(n)
cat(“\n”)

}
.
program continues
.
.
.

No more values in
numbers.
We’re done! We now
move on to the statements
after the for loop
23
5
47

Something to be careful about
n <- 900
m <- 1

numbers <- c(23, 5, 47)
for (n in numbers) {

cat(n)
cat(“\n”)

}

p <- n + m

● Do not use variables that
we assigned outside of the
for loop as the name for
each element inside the
for loop.

● You might need it later,
but it will still be assigned
to the last element of the
vector

Something to be careful about
n <- 900
m <- 1

numbers <- c(23, 5, 47)
for (n in numbers) {

cat(n)
cat(“\n”)

}

p <- n + m

The last value of n in the loop
was 47

The value of p is:
p = n + m = 47 + 1 = 48
NOT:
900 + 1 = 901

Rule: use a different variable
name in the loop

Looping over a sequence

for (i in 1:5) {
...

}

● We can loop over a sequence of numbers
1:5 gives us a vector equivalent
to c(1, 2, 3, 4, 5)

Convention: Use the variable i when looping over a
sequence of numbers

Nested loops

for (i in 1:5) {
for (j in 1:3) {

...
}

}

● We can put a loop inside a loop
Here we loop through the
sequence 1:5, and for every
element of that sequence, we
also loop through 1:3

We will see how this works
in RStudio

Convention: Use the variables i and j when looping
over a sequence of numbers with nested loops

Examples in RStudio

