Writing Function Definitions

CSCli21
Mark Kazakevich



Last time

We learned about R Scripts and environment variables

We talked about the flow of an R program, and how the state
of the environment changes as the program runs

We introduced functions definitions and wrote a function



Today

We're going to look more closely at the steps we took to
write a function

We'll write one step-by-step, and talk about style guidelines
when writing functions

We'll talk about test cases for our functions and calling our
functions in an R Script



Step |: Recognizing when to define a
function

Usually, we write functions because we want to get rid of
repeated code

Let’s revisit our sin function in RStudio

Recognizing when it’s a good idea to write a function:

O Repeated code

o0 Doing a complex command over and over again with
different data (like converting from degrees to radians!)



Step 2: Defining the function

® Once we realize that we should define a function, the next step
is to actually write it!

® A lot of what we do when defining a function involves using a
set of style guidelines

o We'll look at the style guidelines for this course as we write
our function definition



We need to get to something like this

FunctionName <- function(arguments) {

# function body



Step 2: Defining the function

e First off, we always write our functions in a separate R script
file than where we run them
o This helps separate our code so that we can source our
functions into the environment, without also having to run
them
o Also keeps the code cleaner



Step 2: Defining the function

Then, we give it a good name

Make sure the name helps someone reading your code
understand what it might do

Functionl doesn’t really tell us what it does...

SinDegrees | tells us something about the function, and

people can deduce some meaning from this name



Step 2: Defining the function

e GiveTheSinOfTheAngleInDegrees
o Too long!
o0 You don’t need to give all the information in the name, but
give enough to make it useful to the reader

e Style
o All words in the name should be capitalized



Step 2: Defining the function

Next, we need to figure out what arguments the function

needs
O WWhat data is this function working with/manipulating?
o0 What would someone need to provide this function for it

to work properly!?

For our SinDegrees function, we obviously need to provide
an angle, or the function just can’t work!



Step 2: Defining the function

e Give the arguments a good name
o Again, someone reading it needs to derive meaning from it

e argumentl, x, al
o These names don’t really help...

e angleInDegrees

o Tells us the argument is some type of angle
o Good!



Step 2: Defining the function

® We now have the beginning (header) of our function:
SinDegrees <- function(angleInDegrees)

® Let’s continue



Step 2: Defining the function

® Ve now open up our curly brackets:

\

SinDegrees <- function(angleInDegrees) {

b



Step 2: Defining the function

® Ve now open up our curly brackets:

SinDegrees <- function(angleInDegrees) {
# Everything inside the curly

I# brackets is indented with a tab
# sSpace.

LG

Indented space



Docstrings

Every function should have a docstring comment that explains
*what* the function does.

It should NOT explain *how™ the function works.

Use the docstring to explain what the point of the function is,
and what it returns. Use good spelling and grammar!

Should usually start the docstring with the word ‘Returns’



Docstring for
SinDegrees(angleInDegrees)

Good Example (tells us what the function does):

# Returns the sine of 'angleInDegrees', which 1is
# an angle specified in degrees.

Bad Example (says too much about *how™ it works):

# Calculates the sine of 'angleInDegrees', by

# first converting from degrees to radians, and

# then using the original sin function to give us
# the sine of the angle.



Preconditions on arguments

Preconditions tell us what values it makes sense for the
arguments to have

If we had a function for dividing two numbers: p / @

o A precondition on g would be that q is not equal to 0
We can add the precondition in the docstring:

o # Precondition: g is not equal to ©

For SinDegrees, the angle can be 0 and negative, so no
preconditions required.



The Function Body

SinDegrees <- function(angleInDegrees) {

# Returns the sine of 'angleInDegrees',
# which is an angle specified in degrees.

# function bOdy ~———_ This is where the work gets

done!



Function Body

e Contains the ‘algorithm’ for making the function work
o The steps that need to be taken to give you the correct
return value

® You must think about what needs to be done for the function
you’re writing
o ‘| have to convert from degrees to radians, because R’s
built-in sin function only takes radians as an argument”
o0 “Once | have a value for the angle in radians, | will call the
original sin function with that value.”



Function Body

Return statement
o At the end of the function, you put the return value you
want your function to evaluate to in a return statement

return(valueGoesHere)

Put a newline after the return statement in the function body



Function Body

® Intermediate variables/values
o Even if you can write out the return value in one line and
put it in the return statement, you shouldn’t

Bad Example (entire expression in the return statement):

SinDegrees <- function(angleInDegrees) {
# Returns the sine of "'angleInDegrees'’,
# which is an angle specified in degrees.

return(sin(angleInDegrees * (pi / 180)))



Use intermediate variables to help understand
the logic behind what you’re doing

Good Example (intermediate variables explain your logic):

SinDegrees <- function(angleInDegrees) {
# Returns the sine of 'angleInDegrees',
# which is an angle specified in degrees.

angleInRadians <- angleInDegrees * (pi / 180)
sinOfAngle <- sin(angleInRadians)

return(sinOfAngle)
T Clean return statement



We have a function!

SinDegrees <- function(angleInDegrees) {
# Returns the sine of 'angleInDegrees',
# which 1s an angle specified in degrees.

angleInRadians <- angleInDegrees * (pi / 180)
sinOfAngle <- sin(angleInRadians)

return(sinOfAngle)



Let’s put it in an R Script



Step 3: Create Test Cases

We have a function...great!
But now we have to make sure it works

To do that, we will create a table of test cases that we can

run on our function

O What you ‘expect’ the function to return for each
argument value

Good to test ‘edge cases’ - cases that could cause problems
O Usually values like 0, |, really high/low numbers



Step 3: Create Test Cases

Test cases for SinDegrees(angleInDegrees)

20 I

270 -1
173 0.1218693

0 0




Step 4: Run your function on the test cases

e Run your functions in a separate R Script

e Use ‘print’ statements to see the output in the console
o print(SinDegrees(90))

e Check against your test cases to make sure your function
works

e If not, revise your function and try to find out where you went
wrong



Let’s run our test cases in
RStudio



