
Vectors in R

CSC121
Mark Kazakevich

Let’s talk about...

> 2 + 5
[1] 7

This thing

● So far, we’ve seen a few examples these different parts of a
program

Algorithm + Data + Structure = Program

Data Structures

● We know that all programming languages have to handle
data

● Every programming language provides ways to organize and
store data to make it easier and efficient to work with

● These are called Data Structures
● We’re going to learn about one of R’s fundamental data

structures that helps us store and work with data more
easily

Algorithm + Data + Structure = Program

Vectors
● All the numeric values we’ve seen so far are stored in an R

data structure called a ‘Vector’

● A vector in R is an ordered group of values
○ Every value in a vector is called an ‘element’ of that

vector

Vectors with one element
● All of the numbers we’ve been using are really one-element

vectors!
○ For example, R automatically creates a vector every

time we type a number into the Console and press
Enter

○ For example...

Examples of Vectors
> 6
[1] 6

A one-element vector with the
number ‘6’ in it

The ‘1’ does NOT mean there is only one
element in the vector

This ‘1’ means that the value directly beside it is
the first element in the vector, in this case, 6

Vectors with more than one element
● R’s vector data structure allows us to group many

elements together

● To quickly make a multi-element vector, R provides a
function:

c(...)

● ‘c’ stands for ‘combine’.
● This function combines its arguments

into a vector.
● The multiple dots ‘...’ means multiple

arguments with no specific limit

Creating a multi-element vector

> c(4, 7)
[1] 4 7

A vector with two elements

The ‘1’ does NOT mean there is only one element in
the vector● Notice how it still only says ‘1’. This is because the

value directly beside it is the first element of the
vector, 4. 7 is the second element of the vector.

● Let’s talk more about the order of these
elements...

A two-element vector with the
numbers 4 and 7.

Elements have an ordering
● The elements in a vectors are ordered

● When creating a vector with the c(...) function, the elements
take the order that the arguments to the function were in.

> c(23, 9, 534)
[1] 23 9 534

The order of the elements is:
First element: 23
Second element: 9
Third element: 534

Longer vectors
● Vectors can be quite long

○ Maximum size is about 2 billion elements
○ Don’t try this though...your computer will likely run out

of memory and crash!

Longer Vectors
● Often, a large vector printed to the console is too long for

one line
● This is where our [1] comes in

> c(4,7,534,938,6432,535)
[1] 4 7 534 938 6432
[6] 535
● The element to the right of the [1] is the first element

of the vector
● The element to the right of the [6] is the sixth element

of the vector

Working with Vectors
● Just like any other data in R, vectors can be stored in a

variable

● Vectors can be passed as arguments to functions:
FunctionWithVectorArgument(v)

> v <- c(24, 5, 347)
> v
[1] 24 5 347

Indexing
● Often you’ll be working with a vector, and you’ll want to

isolate one of its elements

● Indexing
○ The position of each element in a vector is called its index

■ First element: index 1
■ Second element: index 2
■ Third element: index 3
■ etc..

Indexing
> c(24, 5, 347)
[1] 24 5 347

● If we have the vector above, we say:
○ The element at index 1 is 24
○ The element at index 2 is 5
○ The element at index 3 is 347

● Order matters! c(5, 7) is not the same as c(7, 5)

Indexing

● We can access the element at each index using vector
indexing:

> v <- c(24, 5, 347)

> v[1]
> [1] 24

> v[2]
> [1] 5

> v[3]
> [1] 347

● Notice how we get a new value in its own one-element
vector, which is what we’re used to seeing

Indexing multiple elements
● We can access multiple values to create new vectors from the

original vector
● We can use the colon ‘:’ to get a range of elements from the

vector
● In general, given a vector v, and two positive integers x and y,

v[x:y] gives a vector with the elements
of v from index x to index y (inclusive)

Indexing multiple elements

● Given the vector above
○ We can use the colon ‘:’ to get a range of elements from

the vector. Think of it as getting a ‘slice’ of the vector.

> v <- c(24, 5, 347, 97, 43)

> v[1:3]
[1] 24 5 347

> v[4:5]
[1] 97 43

Can find length of vectors
> v <- c(24, 5, 347, 97, 43)
> length(v)
[1] 5

> v[length(v)]
[1] 43

Type of a Vector

> v <- c(24, 5, 347)
> typeof(v)
[1] “double”

● The type of the vector is defined by the type of its elements
● All elements in a vector must be of the same type
● If you put different types in, R will find a way to convert them

to force them to be the same type

Type of a Vector

> v <- c(24, as.integer(5), 347)
> typeof(v)
[1] “double”

● The type of the vector is defined by the type of its elements
● All elements in a vector must be of the same type
● If you put different types in, R will find a way to convert them

to force them to be the same type

R converts the integer value to a double to
ensure all values have the same type

Let’s look at vectors in RStudio

Let’s write a function for finding the
distance between two points on a graph

You are given the two points
(–1, 2) and (2, 6), and you
want to find the distance
between them
The points look like this:

(-1, 2)

(2, 6)

Distance formula

