Assignment #5
Due: December 2, 2004, by 6:00 PM
(in the CSC 236 drop box in BA 2220)

Question 1. (10 marks) State whether each of the following statements is true $for\ all\ regular\ expressions\ R$ and S. Justify your answers.

- **a.** (3 marks) $(R+S)^* \equiv (R^*S^*)^*$
- **b.** (3 marks) $(R+S)^* \equiv R^* + S^*$
- **c.** (4 marks) $(RS + R)^*R \equiv R(SR + R)^*$

Question 2. (10 marks) For each of the languages below, give a DFSA that accepts the language and a regular expression that denotes it. For each DFSA and regular expression, give an *informal but informative* argument to justify its correctness.

$$L = \{x \in \{0,1\}^* : \text{neither } 00 \text{ nor } 11 \text{ is a substring of } x\}$$

 $L' = \{x \in \{0,1\}^* : \text{both } 00 \text{ and } 11 \text{ are substrings of } x\}$

Question 3. (10 marks)

- **a.** For any language L, define $\mathbf{Odd}(L) = \{x : x \in L \text{ and } |x| \text{ is odd}\}$. Prove that if L is accepted by a FSA, then $\mathbf{Odd}(L)$ is also accepted by a FSA.
- **b.** For any languages L, L', we define the "shuffle" operation \bowtie as follows:

```
L\bowtie L'=\{x\in\Sigma^*: \text{ either } x=\epsilon, or there is a positive integer k and strings y_1,y_2,\ldots,y_k\in L and y_1',y_2',\ldots,y_k'\in L' so that x=y_1y_1'y_2y_2'\cdots y_ky_k'\}
```

Prove that if each of L, L' is accepted by a FSA then $L \bowtie L'$ is also accepted by a FSA.

Question 4. (15 marks) Define the following language over the alphabet $\{1, 2, 3\}$:

```
L_3 = \{x \in \{1, 2, 3\}^* : \text{ at least one symbol appears an odd number of times in } x\}.
```

- **a.** (5 marks) Give a nondeterministic FSA that accepts L_3 . To make part (b) easier, you should construct a NFSA with as few states as possible. (It is relatively easy to do it with seven states, and I know it is possible to do it with six. I don't know if it can be done with fewer.) Informally explain why your NFSA is correct.
- b. (5 marks) Apply the subset construction to the NFSA of part (a) and show the resulting DFSA.
- c. (5 marks) Prove that no DFSA that accepts L_3 has fewer than eight states. (**Hint:** Prove that, for each $a \in \{1, 2, 3\}$, if x and x' are strings in $\{1, 2, 3\}^*$ that differ (at least) in the parity of the number of

occurrences of a, then $\delta^*(s, x) \neq \delta^*(s, x')$, where s is the start state and δ is the transition function of any DFSA that accepts L_3 .)

For further thought—this question is not part of the assignment. Generalise the above results as follows. For any $n \geq 2$, let L_n be the following language over the alphabet $\{1, 2, \ldots, n\}$:

$$L_n = \{x \in \{1, 2, \dots, n\}^* : \text{ at least one symbol appears an odd number of times in } x\}.$$

Prove that

- (i) there is a NFSA with only 2n+1 states that accepts L_n (actually it's possible to prove that 2n states suffice, but the slightly weaker result of 2n+1 states is probably easier to see); and
- (ii) any DFSA that accepts L_n has at least 2^n states.

N.B. This illustrates the power of nondeterminism: For some languages, such as L_n , there can be an exponential amount of savings in the size of the automaton if we use nondeterministic automata. It also shows that the subset construction is, in a sense, optimal: For some languages, such as L_n , no matter how we transform a nondeterministic FSA that accepts the language to a deterministic one, the size of the resulting automaton has to increase exponentially. Another example that illustrates the same points is shown in Exercise 12 of Chapter 7 in the notes.