CSC 180 lab 7A: Command-line arguments
Thurs Oct 25 or Mon Oct 29, 2001

Note: For week 7, there are twhalf-labs; this weels lab session is a combination ofobaeparate, short
topics. Pleasalso see lab 7B'Structs’.

As a systems-oriented programming language, C musgidera fcility to pick up ‘command-line
arguments. For example, when you typécat file”, the “cat” command has to be able to find that string
“file”.
C does this by praiding an alternate alwable definition of main(), whose declaration looklik
this:
int nmain(int argc, char **argv)

“amgc” stands for “argument count’ It is the number of elements targv”, ‘‘argument ector’

(“'vector’ is another vord for “array”, in computer programming)While these are theoretically
arbitrary parameter names, the use of the naimrgge" and “argv” i s so standard that you should not use
ary other name.

1. Write a program using thisceended main() declaration syntax, and simply print #iaesof agc.
Run it with various numbers of guments, e.g.
.la.out xy zabc

./ a.out
.la.out x a

The \alue is alvays one more than you mightgeect. Thisis because that/a.out” i s included in the
count, and is\ailable as agv[0].

2. Since a string can be passed around adue\of type pointeto-char argv should be an array of
strings. Andwhen it is passed to main() by the operating system, it will decay into a pointer to its zeroth
element, so the data will be of type poirtieipointer to char
Write a program which first checks thagiais at least 2, then prints thalwe of agv[1] (using %s).
A session with this program might look d¢ikhis, where ‘%’ is your shell prompt:
% ./a.out hello, world
hel | o,
%
Since "world" is agv[2], it didn't print that part. The shell (command interpreteryigies up the
arguments based on spaces.

3. Write a program which prints all of thegarvalues in a loopTry it out.

