Map-Reduce

By Marina Barsky
Winter 2016, University of Toronto
Single Node Architecture

“Classical” Data Processing
We know how to do it efficiently

Block Nested Loop Join – single pass

\[B(R) + \frac{B(R)}{M-1} B(S) \]

if \(\min(B(R), B(S)) \leq M-1 \)

Sort-Merge Join – 3 passes

\[3 \times B(R) + 3 \times B(S) \]

if \(B(R) + B(S) < M^2 \)

Hash Join – 3 passes

\[3 \times B(R) + 3 \times B(S) \]

if \(\min(B(R), B(S)) < M^2 \)

What if inputs are much much larger?
Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB
• 1 computer reads 30-35 MB/sec from disk
 • ~4 months to read the web
• ~1,000 hard drives to store the web
• Takes even more to do something useful with the data!

• A standard architecture for such problems:
 • Cluster of commodity Linux nodes
 • Commodity network (Ethernet) to connect them
Cluster Architecture

2-10 Gbps backbone between racks

1 Gbps between any pair of nodes in a rack

Switch

CPU
Mem
Disk

CPU
Mem
Disk

CPU
Mem
Disk

CPU
Mem
Disk

...

Each rack contains 16-64 nodes

In 2011 it was estimated that Google had 1M machines, http://bit.ly/Shh0RO
Big-data processing

• Scalability of algorithms
• Inherently parallelizable tasks
• Distributed file system
• Map-reduce computation
• Practice
What does *scalable* mean: operationally

In the past:

- *Out-of-core* – large parts of inputs and outputs are on disk
- External-memory algorithms
 - Small memory footprint
 - Data is brought in chunks to main memory and the results are written to a local disk
- You have a guarantee that the algorithm will terminate

“Works even if data does not fit in main memory on a single machine”
What does *scalable* mean: operationally

Now:

“Can make use of 1000s cheap computers”

- Started from 2000s – no matter how big your server was, you were not able to bring data fast enough to memory from disk
- Use 1000s computers and apply them all to the same problem

Scale out (parallelize) vs. **scale up** (adding more memory)
What does **scalable** mean: algorithmically

In the past:

- If you have \(N \) data items, you perform no more than \(N^m \) operations.

- \(O(N^m) \) - Polynomial-time algorithm → tractable → scalable

- \(O(m^N) \) - Exponential → not scalable → not for big inputs, processing time increases too fast
What does *scalable* mean: algorithmically

Now:

- if you have N data items, you perform no more than N^m/K operations for some large K

- Polynomial-time algorithms must be parallelizable
What does **scalable** mean: algorithmically

Future:

- Data is streaming (Large Synoptic Survey telescope – 30 TB/night)
- You have no more than one pass over the data (N) – make this pass count
- Insert data into some sort of compressed index (log N)

if you have N data items, you perform no more than N log N operations
You call an algorithm *scalable*

- In the past: polynomial-time algorithms
- Now: parallel polynomial-time algorithms
- In the future: streaming algorithms
Inherently parallelizable tasks
Example 1: find matching DNA sequences

- Given a set of short sequences:

- Find all sequences equal to \textit{GATTACGATATTA}
Search algorithm I

GATTACGATATTA

GATTACGATATTA

TAAAAAAATATTA
Search algorithm I

Step 20: found
Search algorithm I

N = 40 records → 40 comparisons
O(N) algorithm
Search algorithm I

N = 40 records → 40 comparisons
O(N) algorithm

Can we do any better?
Search algorithm II

AAAATCCTGCA
AAACGCCTGCA
TTTTCCCTGCA
TTTACGCCTGC

GATTACGATATTA

What if we pre-sort the sequences?
Search algorithm II

Binary search: $\log N$ time

Far better scalability!
Old-style scalability: implemented by DBMS

- Databases are proficient at “Needle in Haystack” problems – extracting small results from big datasets
- Guarantee that your query will always finish, regardless of dataset size
- Indexes are easily built and automatically used when appropriate
- You can take advantage of log N search without implementing index yourself. Most of the algorithmic work is done for you.

```sql
CREATE INDEX seq_idx ON sequences (seq)

SELECT seq FROM sequences
WHERE seq = 'GATTACGATATTA'
```
Example 2: read trimming

- Given a set of DNA reads – sequences of 100 characters long:
 - Trim the final t (bp) characters of each sequence*
 - Generate a new dataset of trimmed sequences

*The accuracy of sequencer drops abruptly after a certain length
Trim algorithm I

• Time 0: $TAAAAAAATATTA \rightarrow TAAAAA$
Trim algorithm I

- Time 1: $CACCTAAATATTA \rightarrow CACCTA$
• The task is fundamentally linear in N: we have to touch every record no matter what

Can we do any better?
Will an index help?
Trim algorithm II

- We can break data into K pieces
- Assign each sub-task to a different machine
- Process each piece in parallel
- All work is finished in time N/K
Schema of parallel “read trimming” task

Input: short sequences

Distribute among K computers

Perform trimming on every read

A big distributed set of trimmed reads
Converting tiff images to png

Distribute among \(K \) computers

Perform conversion of every file

A big distributed set of png images

Simulations with multiple parameters

Sets of parameters for multiple short simulations

Distribute the parameter set among K computers

Run simulations with given parameters

A big distributed set of simulation results

https://www.sciencedaily.com/releases/2013/07/130712102844.htm
The Declaration of Independence
(abbreviated form)

When in the course of human events, it becomes necessary for one people to dissolve the political bonds which have connected them with another, and to assume among the powers of the earth, the separate and equal station to which the laws of nature and of nature’s God entitle them, a decent respect to the opinions of mankind requires that they should declare the causes which impel them to the separation. We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable rights, that among these are life, liberty and the pursuit of happiness. That to secure these rights, governments are instituted among men, deriving their just powers from the consent of the governed. That whenever any form of government becomes destructive to these ends, it is the right of the people to alter or to abolish it, and to institute new government, laying its foundation on such principles and organizing its powers in such form, as to them shall seem most likely to effect their safety and happiness. Prudence, indeed, will dictate that governments long established should not be changed for light and transient causes; and accordingly all experience hath shown that mankind are more disposed to suffer, while evils are sufferable, than to right themselves by abolishing the forms to which they are accustomed. But when a long train of abuses and usurpations, pursuing invariably the same object evinces a design to reduce them under absolute despotism, it is their right, it is their duty, to throw off such government, and to provide new guards for their future security. — Such has been the patient sufferance of these colonies; and such is now the necessity which constrains them to alter their former systems of government. The history of the present King of Great Britain is a history of repeated injuries and usurpations, all having in direct object the establishment of an absolute tyranny over these states. To prove this, let facts be submitted to a candid world. He has refused his assent to laws, the most wholesome and necessary for the public good. He has forbidden his governors to pass laws of immediate and pressing importance, unless suspended in their operation till his assent should be obtained; and when so suspended, he has utterly neglected to attend to them. He has refused to pass other laws for the accommodation of large districts of people, unless those people would relinquish the right of representation in the legislature, a right inestimable to...

Single document processing example

(people, 2)
(government, 6)
(assume, 1)
(history, 2)
...
Word frequencies

- Distribute documents among K computers
- For each document f returns (word, frequency) pairs
- A big distributed list of word histograms per document
- Millions of documents
There is a pattern here ...

- A function that maps a read to a trimmed read
- A function that maps tiff image to png image
- A function that maps a set of parameters to a simulation results
- A function that maps a document to a histogram of word frequencies

The idea is to abstract the farming of parallel programs into a general framework, where the programmer only needs to provide the mapping function itself.
Different task: Compute word frequencies for all documents

The Declaration of Independence
(abbreviated form)

When, in the course of human events, it becomes necessary for one people to dissolve the political bonds which have connected them with others, and to assume among the powers of the earth, the separate and equal station to which the laws of nature and of nature’s God entitle them, a decent respect to the opinions of mankind requires that they should declare the causes which impel them to the separation. We hold these truths to be self-evident, that all men are created equal, that they are endowed by their Creator with certain unalienable rights, that among these are life, liberty and the pursuit of happiness. That to secure these rights, governments are instituted among men, deriving their just powers from the consent of the governed. That whenever any form of government becomes destructive to these ends, it is the right of the people to alter or to abolish it, and to institute new government; laying its foundation on such principles and organizing its powers in such form, as to them shall seem most likely to effect their safety and happiness. Prudence, indeed, will dictate that governments long established should not be changed for light and transient causes; and accordingly all experience hath shown that mankind are more disposed to suffer, while evils are sufferable, than to right themselves by abolishing the forms to which they are accustomed. But when a long train of abuses and usurpations, pursuing invariably the same object evinces a design to reduce them under absolute despotism, it is the right of the people to throw off such government, and to provide new guards for their future security.—Such has been the patient sufferance of these colonies; and such is now the necessity which constrains them to alter their former systems of government. The history of the present King of Great Britain is a history of repeated injuries and usurpations, all having in direct object the establishment of an absolute tyranny over these states. To prove this, let facts be submitted to a candid world. He has refused his assent to laws, the most wholesome and necessary for the public good. He has forbidden his government to pass laws of immediate and pressing importance, unless suspended in their operation till his assent should be obtained; and when so suspended, he has utterly neglected to attend to them. He has refused to pass other laws for the accommodation of large districts of people, unless those people would relinquish the right of representation in the legislature, a right inestimable to (people, 78)
(government, 123)
(assume, 23)
(history, 38)
Word frequencies among all documents

For each document, "map" returns (word, frequency) pairs

A big distributed list of word histograms per document

But we don’t want distributed little histograms, we want one big histogram
Word frequencies among all documents

We want that a single computer has access to all occurrences of a given word
Word frequencies among all documents

- Distribute documents among K computers
- For each document \(\text{map} \) returns \((\text{word}, \text{frequency})\) pair
- A big distributed list of word histograms per document
- Send each frequency pair into computer \(i \) using \(h(\text{word}) \% K \)
Word frequencies among all documents

Distribute documents among K computers

For each document map returns (word, frequency) pair

A big distributed list of word histograms per document

Now each computer can produce (word, frequency) pair for all documents
Word frequencies among all documents

Distribute documents among K computers

For each document f returns (word, frequency) pair

A big distributed list of word histograms per document

We have a distributed histogram
General idea: partitioning by hashing

Only *map* and *reduce* differ from one application to another. Everything else is generic and is implemented in a map-reduce framework.
Map-reduce framework
What is map-reduce

• Google’s computational/data manipulation model
• Elegant way to work with big data
• Queries data sets that do not get changed often – not an operational environment:
 • Amazon would not use map-reduce for search, because each user click changes the user preferences
 • Amazon may use map-reduce for extracting buying patterns per user – Amazon recommender
What is map-reduce

• **Storage Infrastructure – Distributed File System**
 - Input is stored in chunks of ~64 MB on *compute nodes*, only *master node* knows where
 - Google: GFS. Hadoop: HDFS

• **Programming model – Map-Reduce**
 - *Sequentially* read a lot of data
 - Extract something you care about
 - *Group by key*: send to reducer

• **Data model**
 - Input: a *bag of (input key, value)* pairs
 - Output: a *bag of (output key, value)* pairs
Distributed File System
Distributed File System

- **Chunk servers**
 - File is split into contiguous chunks
 - Typically each chunk is 16-64MB
 - Each chunk replicated (usually 2x or 3x)
 - Try to keep replicas in different racks

- **Master node**
 - a.k.a. Name Node in Hadoop’s HDFS
 - Stores metadata about where files are stored
 - Might be replicated

- **Client library for file access**
 - Talks to master to find chunk servers
 - Connects directly to chunk servers to access data

- **Works best for static files**
 - Files are rarely updated
 - Can only grow in size by appending new data to the end
Distributed File System – at the core of map-reduce

- Reliable distributed file system
- Data kept in “chunks” spread across machines
- Each chunk replicated on different machines
 - Seamless recovery from disk or machine failure

Bring computation directly to the data!

Chunk servers also serve as compute servers
Map-reduce computation
Map

• The input is in chunks on different nodes
• *Map* function is forked to the same chunk server where the data is
• The output of *map* function is partitioned by hashing the output key: \(h(key) \mod R \), where \(R \) is the number of reducers
• The partitioned output is written to the same local disk on a computing node where the input is
Shuffle

• The system then performs shuffling of the intermediate (key,value) pairs and sends the data to a corresponding reduce node, according to hash(key). All data with the same key ends up on the same machine

• Creates Master file to store info about the final output, which will also be distributed across chunk servers

• Already at the reducer: produces aggregated lists of values for each key
Reduce

- Each node to which a reduce tasks has been assigned takes one key at a time, and performs required operations on the corresponding list of values.
- The final output is written to a local disk of a reducer, and the Master node is notified about where chunks of data reside.
- The output of a map-reduce program is a distributed file.
Map-reduce solves the following issues:

1: Copying data over a network takes time
 - **Idea:**
 - Bring computation close to the data. The file chunks are distributed across nodes and map programs are forked to the same machine – program comes to data

2: Machines fail
 - One server may stay up 3 years (1,000 days)
 - If you have 1,000 servers, expect to loose 1/day
 - People estimated Google had ~1M machines in 2011: 1,000 machines fail every day!
 - **Idea:**
 - Store files multiple times for reliability. Each file chunk is replicated in at least 3 nodes

3: Parallel programming is difficult
 - Programmer only needs to provide *map* and *reduce* functions which fit the problem. Everything else – distribution, hashing, load balancing – is handled by the system
Coordination: Master

• **Master node takes care of coordination:**
 • **Task status:** (idle, in-progress, completed)
 • **Idle tasks** get scheduled as workers become available
 • When a map task completes, it sends to the master the location and sizes of its R intermediate files, one for each reducer
 • Master pushes this info to reducers

• Master pings workers periodically to detect failures
Dealing with Failures

- **Map worker failure**
 - Map tasks completed or in-progress at worker are reset to idle
 - Reduce workers are notified when task is rescheduled on another worker

- **Reduce worker failure**
 - Only in-progress tasks are reset to idle
 - Reduce task is restarted

- **Master failure**
 - MapReduce task is aborted and client is notified
How many Map and Reduce jobs?

- M map tasks, R reduce tasks

- **Rule of thumb:**
 - Make M much larger than the number of nodes in the cluster
 - One DFS chunk per map is common
 - Improves dynamic load balancing and speeds up recovery from worker failures

- **Usually R is smaller than M**
 - Because output is spread across R files