Algorithms for query evaluation

Join

By Marina Barsky
Winter 2016, University of Toronto
How to parse SQL query

```
SELECT a,b
FROM X,Y,Z
WHERE X.c=Y.c AND Z.d > 12
```

1. What relations are involved: FROM clause
2. Selection condition on rows: WHERE clause
3. Projection on columns: SELECT clause
Cartesian product (cross-product)

If there is no WHERE clause for 2 relations, it is probably a bug, as it will produce a Cartesian product (cross-product) – a huge relation of size $T(R) \times T(S)$.
Join: reminder

- **Natural join (⋈)** - a Cartesian product with equality condition on common attributes

 Example:

 - If R has schema $R(A, B, C, D)$, and if S has schema $S(E, B, D)$
 - Common attributes: B and D
 - Then:

 $$ R \bowtie S = \pi_{A, B, C, D, E} \left[\sigma_{R.B = S.B \land R.D = S.D} (R \times S) \right] $$

- In SQL:

 SELECT * FROM R NATURAL JOIN S
Join: Example

\[R \bowtie S \]

SELECT R.A, B, C, D
FROM R, S
WHERE R.A = S.A

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

<table>
<thead>
<tr>
<th>R</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S</th>
<th>A</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>
Join: Example

\[
R \bowtie S
\]

Example: Select all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

```
R
A | B | C
1 | 0 | 1
2 | 3 | 4
2 | 5 | 2
3 | 1 | 1

S
A | D
3 | 7
2 | 2
2 | 3

Example: Returns all pairs of tuples \( r \in R, s \in S \) such that \( r.A = s.A \)
```
Join: Example

\[
R \bowtie S
\]

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

\[
\begin{array}{cccc}
R & S & \rightarrow & \text{Result} \\
A & B & C & A & D\\
1 & 0 & 1 & 3 & 7 \\
2 & 3 & 4 & 2 & 2 \\
2 & 5 & 2 & 2 & 3 \\
3 & 1 & 1 & & \\
\end{array}
\]
Join: Example

$$R \bowtie S$$

```
SELECT R.A, B, C, D
FROM R, S
WHERE R.A = S.A
```

Example: Returns all pairs of tuples $$r \in R, s \in S$$ such that $$r.A = s.A$$
Join: Example

\[R \bowtie S \]

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)
Semantically: A Subset of the Cross Product

\[R \bowtie S \]

Example: Returns all pairs of tuples \(r \in R, s \in S \) such that \(r.A = s.A \)

Can we actually implement a join this way?
Join algorithm I: Nested Loop
Setup

- We write $R \bowtie S$ to mean join R and S by returning all tuple pairs where all shared attributes are equal.

- We write $R \bowtie S$ on A to mean join R and S by returning all tuple pairs where attribute(s) A are equal.

- For simplicity, we’ll consider joins on two tables and with equality constraints (“equijoins”).

- Given a relation R, let:
 - $T(R)$ = # of tuples in R
 - $B(R)$ = # of blocks (pages) in R

However joins can merge > 2 tables, and some algorithms do support non-equality constraints!

Recall that we read / write entire pages with disk IO
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

for r in R:
 for s in S:
 if $r[A] == s[A]$:
 OUT (r,s)
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

```python
for r in R:
    for s in S:
        if r[A] == s[A]:
            OUT (r,s)
```

Cost:

$B(R)$

1. Loop over the tuples in R

Note that our IO cost is based on the number of *pages* loaded, not the number of tuples!
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

```python
for r in R:
    for s in S:
        if r[A] == s[A]:
            OUT (r,s)
```

Cost:

$B(R) + T(R) \times B(S)$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S

Have to read *all of S* from disk for *every tuple in R*!
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

for r in R:
 for s in S:
 if $r[A] == s[A]$:
 OUT (r,s)

Cost:

$B(R) + T(R) \cdot B(S)$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S

3. Check against join conditions

Note that NLJ can handle things other than equality constraints... just change the if statement!
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

for r in R:
 for s in S:
 if $r[A] == s[A]$:
 OUT (r, s)

Cost:

$B(R) + T(R) \times B(S)$

1. Loop over the tuples in R
2. For every tuple in R, loop over all the tuples in S
3. Check against join conditions
4. Output combined tuple if match

What would the result be if our join condition is trivial (if TRUE)?
Nested Loop Join (NLJ)

Compute $R \bowtie S$ on A:

for r in R:
 for s in S:
 if $r[A] == s[A]$:
 OUT (r,s)

Cost:

$B(R) + T(R) \times B(S)$

What if R ("outer") and S ("inner") switched?

$B(S) + T(S) \times B(R)$

Outer vs. inner selection makes a huge difference-DBMS needs to know which relation is smaller!
Join algorithm IA: Block Nested Loop
IO-aware modification
Block Nested Loop Join (BNLJ)

Compute $R \bowtie S$ on A:

for each chunk c_R of R of size $M-1$:
 load c_R pages of R into mem
 for each p_s page of S:
 for each tuple s in p_s:
 for each tuple r in c_R
 if $r[A] == s[A]$:
 OUT (r, s)

Given M pages of memory

Cost:

$B(R)$

1. Load in $M-1$ pages of R at a time (leaving 1 page free for S)

Note: There could be some speedup here due to the fact that we’re reading multiple pages sequentially however we’ll ignore this here!
Block Nested Loop Join (BNLJ)

Compute $R \bowtie S$ on A:

for each chunk c_R of R of size $M-1$:
 load c_R pages of R into mem
 for each p_s page of S:
 for each tuple s in p_s:
 for each tuple r in c_R
 if $r[A] == s[A]$:
 OUT (r,s)

Given M pages of memory

Cost:

$B(R) + \frac{B(R)}{M-1} B(S)$

1. Load in $M-1$ pages of R at a time (leaving 1 page free for S)

2. For each $(M-1)$-page segment of R, load each page of S

Note: Faster to iterate over the smaller relation first!
Block Nested Loop Join (BNLJ)

Given M pages of memory

Cost:
$$B(R) + \frac{B(R)}{M-1} B(S)$$

1. Load in $M-1$ pages of R at a time (leaving 1 page free for S)

2. For each $(M-1)$-page segment of R, load each page of S

3. Check against the join conditions with all in-mem tuples

BNLJ can also handle non-equality conditions
BNLJ vs. NLJ: Benefits of IO Aware

- In BNLJ, by loading larger chunks of R, we minimize the number of full *disk reads* of S
 - We only read all of S from disk for *every* \((M-1)\)-page segment of R!
 - Still the full cross-product, but more done in memory

\[
B(R) + T(R) \times B(S) \quad \text{BNLJ}
\]

BNLJ is faster by roughly \(\frac{(M-1)T(R)}{B(R)}\)!
BNLJ vs. NLJ: Benefits of IO Aware

• Example:
 • B(R) = 500 pages
 • B(S) = 1000 pages
 • T (R) = 50,000 tuples
 • T (S) = 100,000 tuples
 • We have 11 pages of memory (M = 11)

• NLJ: Cost = 500 + 50,000*1000 = 50 Million IOs =~ 140 hours

• BNLJ: Cost = 500 + \frac{500*1000}{10} = 50 Thousand IOs =~ 0.14 hours

A very real difference from a small change in the algorithm!
Can we do better than Cross-Product?
Smarter than cross-products: from quadratic to nearly linear

• All joins that compute the **full cross-product** have some quadratic term
 • For example we saw:

\[
\text{NLJ} \quad B(R) + T(R)B(S)
\]

\[
\text{BNLJ} \quad B(R) + \frac{B(R)}{M - 1} B(S)
\]

• Now we’ll see some (nearly) linear joins:
 • \(\sim O(B(R) + B(S)) \)

We get this gain by *taking advantage of data structures and algorithms* – for simplicity considering equality constraints (“equijoin”) only!
Join algorithms II: Index Nested Loop
Index Nested Loop Join (INLJ)

Compute $R \bowtie S$ on A:

Given index I on $S.A$:

for r in R:
 $s_L = \text{index } I(r[A])$

for s in s_L:
 OUT r, s

Cost:

$$B(R) + T(R)*(TH_i + SC(S,A))$$

where TH_i is the height of a B-tree and $SC(S,A)$ is the IO cost to collect all values equal to $r[A]$ in the index of $S.A$; assuming these fit on one page, ~ 3 is good est.

$$B(R) + 3 \times T(R)$$

\Rightarrow We can use an index (e.g. B+ Tree) to avoid doing the full cross-product!
INLJ - cost

• We want to compute \(R(X,Y) \bowtie S(Y,Z) \) on \(Y \)
• Suppose there is an index on \(S[Y] \).

• Cost:
 • \(B(R) \) to read entire \(R \) once
 • Each tuple of \(R \) joins with \(SC(S,Y) = T(S)/V(S,Y) \) tuples of \(S \), on average.
 • If \(S \) has a non-clustered index on \(Y \):
 \[\rightarrow I/O \text{ cost is } B(R) + T(R) \times (TH_i + T(S)/V(S,Y)) \]
 • If \(S \) has a clustered index on \(Y \):
 \[\rightarrow I/O \text{ cost is } B(R) + T(R) \times (TH_i + B(S)/V(S,Y)) \]

Algorithm:
for each tuple \(r \) of \(R \), lookup all tuples in \(S \) with key-value \(r[Y] \) and output their join with \(r \).
INLJ: cost example

- $T(R) = 10,000$, $B(R) = 1000$
- $T(S) = 5000$, $B(S) = 500$, $V(S,Y) = 100$
- $M = 11$

INLJ:
- To compute $R(X,Y) \bowtie S(Y,Z)$ using a clustered index on $S[Y]$:
 \[1000 + 10,000 \times 3 \times (500/100) = 153,000 \text{ I/O's}\]
- Even when the top level of B-tree is buffered:
 \[1000 + 10,000 \times (500/100) = 51,000 \text{ I/O's}\]

BNLJ:
- $1000 + 100 \times 500 = 51,000 \text{ I/Os}$

\Rightarrow Use of index is not beneficial if selection cardinality is high (50 in this example)
Join using sorted indexes

• We want to compute $R(X,Y) \bowtie S(Y,Z)$ on Y

• If both R and S have sorted (B-tree) index on Y, do a zigzag-join:
 • We scan the leaves of both B-trees in order. In the best case, we use just $B(R) + B(S)$ disk I/O’s to read the their indexes (if there are no matching values).
Zigzag Join - example

Leaves of B-tree index on R[Y]

Leaves of B-tree index on S[Y]

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.
Zigzag Join - example

Leaves of B-tree index on R[Y]

Leaves of B-tree index on S[Y]

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.
• Since 2<3 skip the 2’s in S’s index.
Zigzag Join - example

Leaves of B-tree index on R[Y]

Leaves of B-tree index on S[Y]

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.
• Since 2<3 skip the 2’s in S’s index.
Zigzag Join - example

Leaves of B-tree index on R[Y]

Leaves of B-tree index on S[Y]

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.
• Since 2<3 skip the 2’s in S’s index.
• Since 3<4 skip 3 in R.
Zigzag Join - example

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.
• Since 2<3 skip the 2’s in S’s index.
• Since 3<4 skip 3 in R.
• Join 4’s (retrieve records).
Zigzag Join - example

• Start with the 1 and 2. Since 1<2 skip 1 in R’s index.
• Since 2<3 skip the 2’s in S’s index.
• Since 3<4 skip 3 in R.
• Join 4’s (retrieve records).
• ...
Zigzag Join

- We jump back and forth between the indexes finding Y-values that they share in common.
- Tuples from R with Y-value that don’t appear in S need never be retrieved, and similarly tuples of S whose Y-value doesn’t appear in R need never be retrieved.
- The worst-case cost (clustered indexes, \(R < S \)):
 - \(B(R) + B(S) + B(R) \times B(S) / V(S, a) \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>4</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Leaves of B-tree index on \(R[Y] \)

Leaves of B-tree index on \(S[Y] \)
Join algorithm III:
Sort-Merge Join (SMJ)
Sort Merge Join (SMJ): Basic Procedure

To compute $R \bowtie S$ on A:

1. Sort R, S on A using external merge sort

2. *Scan* sorted files and “merge”

3. [May need to “backup”- see next]

Note that if R, S are already sorted on A, SMJ will be awesome!
SMJ Example: $R \bowtie S$ on A
with 3-page buffer

- For simplicity: Let each page be *one tuple*, and let the first value be of column A
SMJ Example: $R \bowtie S$ on A
with 3-page buffer

1. Sort the relations R, S on the join key (first value)
SMJ Example: $R \bowtie S$ on A with 3-page buffer

2. Scan and “merge” on join key!

We show the current file pointer, which is the value currently in buffer.
SMJ Example: $R \bowtie S$ on A
with 3-page buffer

2. Scan and “merge” on join key!
SMJ Example: \(R \bowtie S \) on \(A \) with 3-page buffer

2. Scan and “merge” on join key!
SMJ Example: $R \bowtie S$ on A
with 3-page buffer

2. Done!
What happens if join keys have many duplicates?
Multiple tuples with same join key: “backup”

1. Start with sorted relations, and begin scan / merge...
Multiple tuples with same join key: “backup”

1. Start with sorted relations, and begin scan / merge...
Multiple tuples with same join key: “backup”

1. Start with sorted relations, and begin scan / merge...
Multiple tuples with same join key: “backup”

1. Start with sorted relations, and begin scan / merge...

Have to “backup” in the scan of S and read tuples we’ve already read!
SMJ: cost of a final scan

• At best, no backup \rightarrow final scan takes $B(R) + B(S)$ reads
 • For ex.: if no duplicate values in join attribute

• At worst (e.g. full backup each time), scan could take $B(R) \times B(S)$ reads!
 • For ex.: if all duplicate values in join attribute, i.e. all tuples in R and S have the same value for the join attribute
 • Roughly: For each page of R, we’ll have to back up and read each page of S...
 • Not a very realistic scenario
SMJ: Total cost

- Cost of SMJ is **cost of sorting** R and S and **writing** temporary sorted files: \(4B(R) + 4B(S)\)

- Plus the **cost of scanning**: \(~B(R) + B(S)\)
 - Because of **backup**: in worst case \(B(R) \times B(S)\); but this would be very unlikely
SMJ cost: example

- We have 101 buffer pages,
- B(R) = 1000, and B(S) = 500 pages:
 - **SMJ**:
 - Sort both in two passes: $4 \times 1000 + 4 \times 500 = 6,000$ IOs
 - Merge-join phase $1000 + 500 = 1,500$ IOs
 - = 7,500 IOs
 - What with **BNLJ**?
 - $500 + 1000 \times \left\lfloor \frac{500}{100} \right\rfloor = 5,500$ IOs
- But, if we have 26 buffer pages?
 - **SMJ** has same behavior (still 2 passes): = 7,500 IOs
 - **BNLJ**? 25,500 IOs!

BNLJ:
$B(R) + \frac{B(R)}{M-1}B(S)$

SMJ:
$5B(R) + 5B(S)$

SMJ is ~ linear vs. BNLJ is quadratic...
A simple optimization for SMJ: join during sort

- SMJ is composed of a 2PMMS \textit{sort} and a \textit{join of sorted tuples}

- During the 2PMMS, if R and S have \(\leq (M - 1)\) (sorted) runs in total:
 - We could do two separate merges (for each of R & S) at this point, complete the sort phase, and start the join phase...
 - OR, we could combine them: do one \((M - 1)\)-way merge simultaneously for R and S and complete the join!
Un-Optimized SMJ

Sort Phase (Ext. Merge Sort)

Split & sort

Merge

Merge / Join Phase

Joined output file created!

Given \(M \) buffer pages

Unsorted input relations
Simple SMJ Optimization

Partition sort Phase (2PMMS)

Split & sort

<= (M-1) total runs for R and S

Merge / Join Phase

Split & sort

(M-1)-Way Merge / Join

Given \(M \) buffer pages

Unsorted input relations

Joined output file created!
Optimized SMJ: memory requirements

- If we can initially split R and S into total M-1 runs, each run of length \(\leq M \), then we only need \(3(B(R) + B(S)) \) for SMJ!
 - 2 Read/Write per page to sort runs in memory, 1 Read per page to (M-1)-way merge / join!

- How much memory for this to happen?
 - \(\frac{B(R)+B(S)}{M-1} \leq M \Rightarrow \sim B(R) + B(S) \leq M^2 \)

- Thus, \(M \geq \sqrt{B(R) + B(S)} \) is an approximate sufficient condition for this algorithm

Given \(M \) buffer pages

If the sum of R,S has \(\leq M^2 \) pages, then SMJ costs \(3(B(R)+B(S)) \)!
Takeaway points from SMJ

If input already sorted on join key, skip the sorts.
 • SMJ is basically linear.
 • Nasty but unlikely case: too many duplicate join keys.

SMJ needs to sort both relations
 • If $B(R) + B(S) \leq M^2$ then cost is $3(B(R) + B(S))$
Join algorithm IV: Hash Join (HJ)
Recall: Hashing

• **Magic of hashing:**
 • A hash function h_M maps into $[0, M-1]$
 • And maps nearly uniformly

• A hash **collision** is when $x \neq y$ but $h_M(x) = h_M(y)$
 • Note however that it will **never** occur that $x = y$ but $h_M(x) \neq h_M(y)$

• We hash on attribute A, so our hash function $h_M(t)$ has the form $h_M(t.A)$.
 • **Collisions** may be more frequent, as we have much more tuples than the buckets
Hash Join: High-level

To compute $R \bowtie S$ on A:

1. **Partition Phase**: Using one (shared) hash function h_M, partition R and S into $M-1$ buckets

2. **Matching Phase**: Take pairs of buckets whose tuples have the same values for h, and join these

We *decompose* the problem using h_M, then complete the join
HJ: high-level

1. **Partition Phase**: Using one (shared) hash function h_M, partition R and S into $M-1$ buckets

Note our new convention: pages each have two tuples (one per row)
2. Matching Phase: Take pairs of buckets whose tuples have the same values for h_M, and join these
2. Matching Phase: Take pairs of buckets whose tuples have the same values for h_M, and join these.
Hash Join phase 1: partitioning

Goal: For each relation, partition relation into **buckets** such that if \(h_M(t.A) = h_M(t'.A) \) they are in the same bucket.

Given \(M \) buffer pages, we partition into \(M-1 \) buckets:

- We use \(M-1 \) buffer pages for output (one for each bucket), and 1 for input.
 - The “dual” of merge-sorting.
- For each tuple \(t \) in input, copy to a buffer page \(h_M(t.A) \).
- When buffer fills up, flush to disk.
How big are the resulting buckets?

- Given **B blocks of R**, we partition into **M-1 buckets**:
 - \rightarrow Ideally our buckets are each of equal size $\sim \frac{B}{M}$ pages

- What happens if there are many **hash collisions**?
 - Some buckets could be $> \frac{B}{M}$

- What happens if there are multiple **duplicate join keys**?
 - Nothing we can do here... could have some **skew** in size of the buckets
How big at most do we want the resulting buckets?

• Ideally, our buckets would be of size $\leq M - 1$ pages

• Recall: If we want to join a bucket R_i from R and one from S, we can do BNLJ in linear time if for one of them (say R_i), $B(R_i) \leq M - 1$!
 • And more generally, being able to fit bucket in memory is advantageous

Recall for BNLJ:
$$B(R) + \frac{B(R)B(S)}{M - 1} = 1$$

Given M buffer pages
We partition into $M-1 = 2$ buckets using hash function h_2 so that we can have one buffer page for each partition (and one for input).

For simplicity, we’ll look at partitioning one of the two relations - we just do the same for the other relation!

Recall: our goal will be to get $M - 1 = 2$ buckets of size $\leq M - 1 \rightarrow 2$ pages each.
Hash Join Phase 1: Example

1. We read pages from R into the “input” page of the buffer...

Given $M = 3$ buffer pages
Hash Join Phase 1: Example

2. Then we use **hash function** h_2 to find the output bucket, which each has one page in the buffer.

Given $M = 3$ buffer pages
Hash Join Phase 1: Example

2. Then we use **hash function** h_2 to find the output bucket, which each has one page in the buffer.

Given $M = 3$ buffer pages.
Hash Join Phase 1: Example

3. We repeat until the buffer bucket pages are full...

Given $M = 3$ buffer pages
Hash Join Phase 1: Example

3. We repeat until the buffer bucket pages are full… then flush to disk

Given $M = 3$ buffer pages
Disk

Main Memory

Input page

Output (bucket) pages

R (3,j)
(0,j)
(5,a)
(0,j)

(0,a)
(3,a)

(5,a)
(0,a)

(5,b)
(0,j)

(0,a)
(0,j)

(3,a)
(3,j)

Hash Join Phase 1: Example

Note that collisions can occur!

Given $M = 3$ buffer pages

Collision!!!

$h_2(5) = h_2(3) = 1$
Hash Join Phase 1: Example

Finished phase I for R

Given $M = 3$ buffer pages
Hash Join Phase 1: complete

Given $M = 3$ buffer pages

We wanted buckets of size $M-1 = 2$...
Some of them could be larger due to:

(1) Duplicate join keys

(2) Hash collisions
Now that we have partitioned R and S...
Hash Join Phase 2: Matching

- Now, we just join pairs of buckets from R and S that have the same hash value to complete the join!
Hash Join Phase 2: Matching

• Again, since \(x = y \rightarrow h(x) = h(y) \), we only need to consider pairs of buckets (one from R, one from S) that have the same hash function value.

• If our buckets are \(\sim M - 1 \) pages each, can join each such pair using BNLJ in linear time; recall (with \(B(R) = M-1 \)):

\[
\text{BNLJ Cost: } B(R) + \frac{B(R)B(S)}{M-1} = B(R) + \frac{(M-1)B(S)}{M-1} = B(R) + B(S)
\]

Joining the pairs of buckets is linear! (As long as smaller bucket \(\leq M-1 \) pages)
Hash Join Phase 2: Matching

If condition is an equality – we explore only matching buckets – diagonal.
Hash Join Phase 2: Matching

If it is not an equijoin, we explore this **whole grid!**
Hash Join: memory requirements

- Given M buffer pages

- Suppose (reasonably) that we can partition into M buckets in 1 pass:
 - For R, we get M buckets of size \(\sim \frac{B(R)}{M} \)
 - To join these buckets in linear time, we need each bucket of R to fit in M-1 pages, so we have:

\[
M - 1 \geq \frac{B(R)}{M} \Rightarrow \sim M^2 \geq B(R)
\]

Quadratic relationship between smaller relation's size & memory!
Hash Join: cost

- *Given enough buffer pages as on previous slide...*

- **Partitioning** requires reading + writing each page of R,S
 - $\rightarrow 2(B(R)+B(S))$ IOs

- **Matching** (with BNLJ) requires reading each page of R,S
 - $\rightarrow B(R) + B(S)$ IOs

HJ takes $\sim 3(B(R)+B(S))$!
Sort-Merge vs. Hash Join

- **Given enough memory**, both SMJ and HJ have performance:
 \[M^2 > B(R) + B(S) \]
 \[\sim 3(B(R)+B(S)) \]

- **“Enough” memory =**
 - SMJ: \(M^2 > B(R) + B(S) \)
 - HJ: \(M^2 > \min\{B(R), B(S)\} \)

Hash Join superior if relation sizes **differ greatly**. Why?
Further Comparison of Hash vs. Sort Joins

- Hash Joins are highly parallelizable.
- Sort-Merge less sensitive to data skew and result is sorted
Summary

• Saw IO-aware join algorithms
 • Massive difference

• Memory sizes are the key in hash versus sort join
 • Hash Join = Little dog (depends on smaller relation)

• Skew is also a major factor
Impact of Buffering

• If several operations are executing concurrently, estimating the number of available buffer pages is guesswork.

• Repeated access patterns interact with buffer replacement policy.
 • e.g., Inner relation is scanned repeatedly in Simple Nested Loop Join. With enough buffer pages to hold inner, replacement policy does not matter. Otherwise, MRU is best, LRU is worst (*sequential flooding*).

• Does replacement policy matter for Block Nested Loops?

• What about Index Nested Loops? Sort-Merge Join?